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Introduction
@000

Study distributed systems and applications

Many distributed systems in use today or tomorrow (HPC, Clouds, Edge, Fog...)

Resource management for many issues (energy, fault tolerance, scheduling, scalability,
heterogeneity. . . )

Methodological experimental approaches

m Direct experimentation (real applications on real platforms)
m Simulation (application prototypes on platforms models)
m Something in between (emulation, partial simulation. .. )
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Introduction
[o] lele}

Building simulators from scratch is risky

How useful is a simulator whose results cannot be trusted?

m Models validated?
m Implementation tested?
m Model instantiation evaluated?

Doing it thoroughly may take (dozens of) years!

Using a validated simulation framework helps a lot

m Thoroughly validated models
m Thoroughly tested implementation
m Model instantiation responsibility is still on you
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Promising simulation framework for resource management?

Convenient APl but bad models (PeerSim, GridSim, CloudSim...)

m No hope to observe complex phenomena

Packet-level network simulators (NS-3, INSEE. .. )

m Fine granularity — does not scale for concurrent jobs / large systems
m Usable for special cases — e.g., interference-free placements [PML15]
m No model for other resources (CPUs, storages. . .)

Flow-level versatile simulator (SimGrid)

m Tunable granularity, scales
m Models for main types of resources (network, CPUs, storages)
m Power consumption models based on resource usage
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SimGrid
@00

Overview

Simulation framework around distributed platforms and applications

Main use cases
m Prototype systems or algorithms
m Evaluate various platform topologies/configurations
m Study existing distributed app (create digital twin)

Key features
m Sound/accurate models: theoretically and experimentally evaluated
m Scalable: fast models and implementations
m Usable: LGPL, linux/mac/windows, C++ Python and Java
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SimGrid
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Overview (2)

Numbers

m Exists since early 2001, development still very active
m =~ 200k lines of C/C++ code

® ~ 32k commits

m Used in at least 532 scientific articles

Community

® 4 main developers

m Many power users (current/previous PhD. students. .. )

m Get help easily (documentation, mattermost, mailing list. . .)
m Your contributions can be merged
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SimGrid
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Architecture

How to build your simulator?

m Use one of the SimGrid interfaces
m Link the SimGrid library with your code

Available interfaces

m S4U  write your own simulator (actors, messages), C++ C or Python
m MSG older brother of S4U, C or Java

= MC verify properties on your application model (model is code)

m SMPI  smpicc/smpirun on your real MPI app

m RSG  emulate distributed memory apps (S4U-like API)

m Batsim study resource management (higher-level)
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SimGrid
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Platform and network models

Platform = graph of hosts and links

Hosts: computational resources
m Speed (FLOP per second)

Links: network resources
(cables, switches, routers...)
m Latency (seconds)
m Bandwidth (bytes per second)

Several network models available
m Fast flow-level: slow start, TCP
congestion, cross-traffic
m Constant time: a bit faster
(unrealistic)
m Packet-level: NS-3 binding

Link
(switch)

Links
(cables)

Hosts
(nodes)

/1 TN\

lat (s,
bw (o/s;

lat (s,
bw (o/s,

spd(flop/s.
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SimGrid
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Actors, computations and communications

Actors

m One of the simulation actors — AKA agent, thread, process. ..
m Executes user-given code on a Host
m User-given code may contain SimGrid calls

Main SimGrid calls

m Compute x flops on current host
m Send x bytes to an actor/host/mailbox
m Yield (just interrupt control flow)
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SimGrid
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S4U simulator example (Python)

from simgrid import Actor, Engine, Host, this_actor

def sleeper():
this_actor.info("Sleeper started")
this_actor.sleep_for(1)
this_actor.info("I'm done. See you!")

def master():
this_actor.execute(64)
actor = Actor.create("sleeper", Host.current(), sleeper)
this_actor.info("Join sleeper (timeout 2)")
actor.join(2)

if __name__ == '__main__"':
e = Engine(sys.argv)
e.load_platform(sys.argv[1])
Actor.create("master", Host.by_name("Tremblay"), master)
e.run()

11/43



SimGrid
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Actor execution model

Main points
m mutual exclusion on actors
m maestro dictates who run
(deterministic)
m SG calls ~ syscalls
m interruption points inside
user-given functions

Various implementations
m pthread: easy debug, slow
m asm: blazing fast
m ucontext, boost context...

SimGrid simulation process

Simulation data

User-given

Execution control (maestro)

compute
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SimGrid
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Energy model (DVFS)

m Resources have power states (DVFS)
m SimGrid: Manually switch pstates, which change the flop rate
m For one pstate, consumption = linear function of CPU use (+ idle jump)
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SimGrid
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Energy model (ON/OFF)

ON < OFF takes time (seconds) and energy (Joules)
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m Not easy for the noise: everybody wants something specific

m SimGrid provides basic mechanisms, you have to help yourself

m Switching ON/OFF is instantaneous
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Batsim
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Overview

Resource management simulator built on top of SimGrid
Main use cases

m Analyze and compare online resource management algorithms
m Workload/platform dimensioning

Key features

m Prototype scheduling algorithms in any programming language
m Or use real schedulers (done on OAR and K8s, prototypes for flux/slurm)
m Several job models (tunable level of realism) without deep SimGrid knowledge
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[e]e] le]e]

Overview (2)

Numbers

m Exists since 2015
m ~ 9k lines of C+-+ code
m ~ 2k commits

Community

m 1-2 main developers at the same time
m Get help easily (documentation, mattermost, mailing list)
m Users are mostly from scientific labs (international), companies
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Architecture

Real

RIMS

Batsim simulation

decision maker (RJMS + adaptor)

A A
OO protocol
workload
batsim
users

real
platform

input and simulation platform
output orchestrator control

results

simulated
platform
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Protocol

Batsim
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Batsim
Process

Simulating... C

Something happened

Decision
Process

Do this

Simulating... C

------mm e e o

v

Classical scheduling events
m Job submitted
m Job finished

Resource management decisions
m Execute job j on M = {1,2}
m Shutdown M = {3,...,5}

Simulation/monitoring control
m Call scheduler at t =120
m How much energy used?
m How much data moved?
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Batsim

Platform

SimGrid platform + some sugar

RJMS internals on master host

Disks modeled as speed=0 hosts
m Enables parallel task use

Link
(switch)

Links

Hosts
(nodes)

Link
(disks)

Hosts
(disks)

lat (s]
bw (o/s;

lat (s]

bw (o/s;
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spd=0
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Batsim

Jobs and profiles
Jobs : scheduler view

m User resource request Compute [ 160 0 47 0 ]
[ ] (Walltlme) (flop)

. . . hostl host2 host3 host4
m Simulation profile

Profiles : simulator view hostl | 366 0 O O
i ?
m How to simulate the app? host2 | 566366 0 0
. Comm
Proﬁle types (0) host3 5e6 5e6 0 0
m Fixed length host4|| 56 5e6..0 0

Parallel task |
Trace replay (MPI...)
Composition (seq., parallel)
Convenient shortcuts
m |0 transfers (alone) Sequence > >
m |O transfers (along task)
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Batsim

Application model example: Stencil with checkpoints

Loads data from parallel filesystem Profile example
Iteration: local computations, m Bundle 100 iterations in 1 parallel task
exchange data with neighbors

Every 100 iterations: dump
checkpoint on parallel file system
Stop after 1000 iterations. Load initial data

Rank 0 Rank 1 ¢
repeat 10 times

repeat 1 time

Do 100 iterations

I | !

Checkpoint data

Rank 2 Rank 3
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Batsim

Application model example: Stencil with checkpoints

{

"initial_load": {

"type": "parallel_homogeneous_pfs",

"bytes_to_read": 67108864,

"bytes_to_write": O,

"storage": "pfs" },
"100_iterations": {

"type": "parallel",

"cpu": [ 1e9, 1e9, 1e9, 1e9],
com": [ 0, 819200, 819200, 0,

819200, 0, , 819200,
819200, 0, , 819200,
0, 819200, 819200, 0l 1,

"checkpoint": {

"type": "parallel_homogeneous_pfs",

"bytes_to_read": 0,

"bytes_to_write": 67108864,

"storage": "pfs" },
"iterations_and_checkpoints": {

"type": "composed",

"repeat": 10,

"seq": ["100_iterations", "checkpoint"] },
"imaginary_stencil": {

"type": "composed",

"repeat": 1,

"seq": ["initial_load", "iterations_and_checkpoints"] }

o o
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Batsim

Ecosystem and Usage

Ecosystem
m Set of scheduling algorithms (C++, Python, Rust, D, Perl...)
m Tools to generate platforms and workloads
m (Interactive) tools to visualize/analyze Batsim results
m Tools to help experiments (environment control, execution. .. )

Already used to study
m Online scheduling heuristics
m Energy/temperature management
m Use of Machine Learning in scheduling
m Big data / HPC convergence (best effort Spark jobs within HPC cluster)
with distributed file system (HDFS)
Evolving jobs with parallel file system + burst buffers
Impact of user behaviors
Fault tolerance
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Coarse-grained simulation
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Profile evaluation from Batsim initial paper!

Experiment

m Execute workloads with Batsim and on Grid’5000 (OAR)

m Same scheduler implementation (conservative backfilling)

m 9 synthetic workloads (4h each)

m Apps from NAS Parallel Benchmarks (IS, FT, LU), various sizes/classes
m Job profiles generated from app instrumentation

m Compare Gantt charts & scheduling objectives

Conclusions

m Real ~ simulated for all profiles (delay, ptask, MPI replay)
m Observed no interference (network capacity > workload needs)

!Pierre-Francois Dutot et al. “Batsim: a Realistic Language-Independent Resources and Jobs

Management Systems Simulator”. In: Job Scheduling Strategies for Parallel Processing. 2015.
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Coarse-grained simulation
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Performance per profile type (2 synthetic workloads)
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Reproduce repo. https://gitlab.inria.fr/adfaure/ptask_tit_eval

job profile
rigid delay

. parallel task

[l Vi replay
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Coarse-grained simulation
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Profile types comparison

What performance/accuracy trade-off?

Rigid delay Parallel task MPI trace replay

m Very fast = Fast enough! = Much slower
m Context-free m Coarse-grained interf. m Fine-grained interf.
m Rarely useful for apps = Versatile & convenient = MPI only
(dynamic injection) = Not validated yet m Validated predictions
[CGS15]
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Profile types comparison

What performance/accuracy trade-off?

Rigid delay Parallel task MPI trace replay

m Very fast = Fast enough! = Much slower
m Context-free m Coarse-grained interf. m Fine-grained interf.
m Rarely useful for apps = Versatile & convenient = MPI only
(dynamic injection) = Not validated yet m Validated predictions
[CGS15]

m Agregate MPI traces — huge accuracy drop, almost no performance gain :(

m Parallel tasks’ accuracy needs to be evaluted
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Evaluate parallel tasks — platform setup

Platform network

Switch

10.0.0.2 10.0.0.3 10.0.0.4 10.0.0.1 10.0.4.1 10.0.4.2 10.0.4.3 10.0.4.4

efOT efl ef07< efl efOT efl ef01< efl efOT efl ef01< efl

G =) (& = &= = = =3 v =9 (v =9 (w =
Nodes group 1 Routing node Nodes group 2
(10.158.0.0/22) (10.158.4.0/22)

Overdimensioned network Grid’5000 platforms

Need to create a contention point! = Grisou and Paravance .
m Split switch into two groups (subnets) - S;.;me homogeneous machines
m Inter-group comms via routing node m Different switch
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Evaluate parallel tasks — platform setup

Reconfigured network

10.0.0.1

10.0.0.2 10.0.0.3 10.0.0.4

ef01< efl efOT ef1 efOT efl

¥ = ¢ = & =
Nodes group 1
(10.158.0.0/22)

3 ==0)

Routing node

Overdimensioned network

Need to create a contention point!

m Split switch into two groups (subnets)
m Inter-group comms via routing node

Coarse-grained simulation
[ee]e]e] Telelelelele]e]e]

10.0.4.1

10.0.4.2 10.0.4.3 10.0.4.4

efOT efl ef01< efl e1’01< efl
CGer =9 (w =9 (» =9

Nodes group 2
(10.158.4.0/22)

Grid’5000 platforms
m Grisou and Paravance

m Same homogeneous machines

m Different switch
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Coarse-grained simulation
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Evaluate parallel tasks — application and noise

Real application (matrix multiplication)

m Matches parallel tasks hypotheses Noise. _ o _
m Short compute & comm phases m High traffic generation via tcpkali
m — Homogeneous progress m 1 node per group
= 8 nodes per group (16 core / node) m Periodic (T =60 s)
m Parameters m 0 % noise : 60 s idle
m Block size m 25 % noise : 15 s traffic — 45 s idle

m Sync / Async broadcasts

Application nodes Noise node Noise node Application nodes
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Real runs behave as expected

Noise: never (0 %)

1.25e9 M AT AN RPN

Noise: 30s/30s (50 %)

o %
0

Noise: always (100 %)
1.25e9 WMMMWWYWWMWL

Bandwidth (o/s)

r'y vy )

0 100 200 300 400 500
Time (s)

— MPI (1 host!) — tcpkali — router (eno2) 3143
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Ptask vs Reality

Results

_ 3;1500- Grisou =
m Parallel task: 0 % point seems fine > :
m Parallel task: consistent behavior € 1000- )
m Real: Grisou & Paravance are E‘ o~
different o e
‘S 500~ ‘_,::-_:‘_'_f-_-. ..... e i -+
Questions 8 Paravance
m How to calibrate the 100 % point? o o- ! ! ! ! !
m Why do Grisou & Paravance 0 25 50 75 100
switches' behavior differs so much? Noise time fraction (%)

— Run another experiment with a more complex noise
m Noise always active
m 5 nodes per group for the noise
m Many ways to connect noisy nodes together (random graph generation)
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Runtime vs Number of connections (real)

Grisou Paravance
150 A
Number of
. host pairs
&
2 b £ 0
E 1009 4 ° . o 1
=} °
= (] [ ] o 2
s .3
4
50 1 5
O_
T T T T T T T T
0 10 20 30 0 10 20 30

Number of TCP connections
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Runtime vs Number of pairs (real)

Grisou Paravance

Number of
connections

o

150 1

[ Yo )

e 0

100 H e °

Mpi runtime
L ]
L]

o B~ N R

50 16

0 1 2 3 4 5 0 1 2 3 4 5
Number of host pairs
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Grisou /Paravance difference explained

Grisou
m App performance correlated with number of TCP connections in noise
m Noise connection location has no effect

Paravance
m App performance correlated with number of different pairs of hosts in noise

Conclusions

m Switches have a different sharing policy
m SimGrid: Fair sharing among TCP connections regardless of their source/destination
m — Ignore Paravance for now
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Ptask vs Grisou — varying number of connections in noise

Application e ptask 4 real smpi

5000

(2]

o 40001 .
3000 o

2000 | o ®

—_
o
o
o

1

[ ]
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o

1

>
)
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»
»
»
=
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Application runtime (s)

10 20
Number of connections in noise

o -
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Ptask vs Grisou — varying number of connections in noise

Application e ptask 4 real smpi
5000 . Houston, we have a problem!
o m Huge overestimation when link
40001 o saturated by many connections
Tg’ o m Number of connections inside ptasks
£ 30004 o ignored by ptask_LO07
E o* m Bad sharing when Big vs Small ptasks
-% 2000 o* m No fix in ptask_L07
L . (recursive Max-Min Fairness)
g
1000 . o -
. — New model implementation
slanannnnnsnanans s 1 m Bottleck Max Fairness [BR15]
O_
0 10 20 30

Number of connections in noise
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Ptask-BMF vs Grisou — varying number of connections in noise

Application runtime (s)

200 A
i
4
150 4 ...o'
°
'y o0 °®
o ®
A 4 o'....
100 A eoc*®’
A ...o.
0o ®
501
0-
0 10 20 30

Number of connections in noise

Application
e ptask-bmf
A real
smpi
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Conclusion
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Take home message

This talk in a nutshell
m SimGrid: sound toolkit to build your simulator
m Batsim: study resource management, tunable profile granularity
m ptask_bmf: very promising coarse-grained model

Many questions around ptask_bmf
m BMF solution: existence but no uniqueness. . .
m Termination of fast/greedy solvers?
m Performance overhead?

Batsim
m Validation of applications models?

m Ongoing architecture overhaul
m Single-process simulations

m Flatbuffers serialization
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Max-min Fairness

The min function is not strictly increasing so
a recursive optimization is needed

m Water-filling [BG87]
m Allocate € to each flow until a link is saturated (), A je = C;)
m Fix the saturated flows and repeat
m Recursive bottleneck identification
m For each link j, ¢, = C;/ >~ Ajj, consider € = minj¢;
m Fix the saturated flows, update link capacity, and repeat

Low complexity, gracefully extends to weighted version, exploits the fact that A;; > 0

Slide from Arnaud Legrand. https://gitlab.inria.fr/alegrand/slides_fair_sharing
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Bottleneck Max Fairness

max-min fairness ~ "bottleneck resources are fairly shared"

m Axiom : Every “flow” f has a bottleneck resource j s.t.
B Aijpi=G (the resource is saturated)
B Arjpr = max; Aj jp; (f is active all the time)
m ~~ Flows with the same bottleneck get the same share
m Find |F| bottlenecks and solve A'p = C’

It is quite a reasonable choice for streaming and parallel tasks

Slide from Arnaud Legrand. https://gitlab.inria.fr/alegrand/slides_fair_sharing
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