
Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Coarse-Grained Simulation for Resource Management of
Distributed Systems

Millian Poquet

2022-04-27

1 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Study distributed systems and applications

Many distributed systems in use today or tomorrow (HPC, Clouds, Edge, Fog. . .)

Resource management for many issues (energy, fault tolerance, scheduling, scalability,
heterogeneity. . .)

Methodological experimental approaches

Direct experimentation (real applications on real platforms)
Simulation (application prototypes on platforms models)
Something in between (emulation, partial simulation. . .)

2 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Building simulators from scratch is risky

How useful is a simulator whose results cannot be trusted?

Models validated?
Implementation tested?
Model instantiation evaluated?

Doing it thoroughly may take (dozens of) years!

Using a validated simulation framework helps a lot

Thoroughly validated models
Thoroughly tested implementation
Model instantiation responsibility is still on you

3 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Promising simulation framework for resource management?

Convenient API but bad models (PeerSim, GridSim, CloudSim. . .)

No hope to observe complex phenomena

Packet-level network simulators (NS-3, INSEE. . .)

Fine granularity → does not scale for concurrent jobs / large systems
Usable for special cases — e.g., interference-free placements [PML15]
No model for other resources (CPUs, storages. . .)

Flow-level versatile simulator (SimGrid)

Tunable granularity, scales
Models for main types of resources (network, CPUs, storages)
Power consumption models based on resource usage

4 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Table of Contents

1 Introduction

2 SimGrid

3 Batsim

4 Coarse-grained simulation

5 Conclusion

5 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Overview

Simulation framework around distributed platforms and applications

Main use cases
Prototype systems or algorithms
Evaluate various platform topologies/configurations
Study existing distributed app (create digital twin)

Key features
Sound/accurate models: theoretically and experimentally evaluated
Scalable: fast models and implementations
Usable: LGPL, linux/mac/windows, C++ Python and Java

6 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Overview (2)

Numbers

Exists since early 2001, development still very active
≈ 200k lines of C/C++ code
≈ 32k commits
Used in at least 532 scientific articles

Community

4 main developers
Many power users (current/previous PhD. students. . .)
Get help easily (documentation, mattermost, mailing list. . .)
Your contributions can be merged

7 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Architecture

How to build your simulator?

Use one of the SimGrid interfaces
Link the SimGrid library with your code

Available interfaces

S4U write your own simulator (actors, messages), C++ C or Python
MSG older brother of S4U, C or Java
MC verify properties on your application model (model is code)
SMPI smpicc/smpirun on your real MPI app
RSG emulate distributed memory apps (S4U-like API)
Batsim study resource management (higher-level)

8 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Platform and network models
Platform = graph of hosts and links

Hosts: computational resources
Speed (FLOP per second)

Links: network resources
(cables, switches, routers...)

Latency (seconds)
Bandwidth (bytes per second)

Several network models available
Fast flow-level: slow start, TCP
congestion, cross-traffic
Constant time: a bit faster
(unrealistic)
Packet-level: NS-3 binding

lat (s)
bw (o/s)

lat (s)
bw (o/s)

spd(flop/s)

Link
(switch)

Hosts
(nodes)

Links
(cables)

9 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Actors, computations and communications

Actors

One of the simulation actors — AKA agent, thread, process. . .
Executes user-given code on a Host
User-given code may contain SimGrid calls

Main SimGrid calls

Compute x flops on current host
Send x bytes to an actor/host/mailbox
Yield (just interrupt control flow)

10 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

S4U simulator example (Python)
from simgrid import Actor, Engine, Host, this_actor

def sleeper():
this_actor.info("Sleeper started")
this_actor.sleep_for(1)
this_actor.info("I'm done. See you!")

def master():
this_actor.execute(64)
actor = Actor.create("sleeper", Host.current(), sleeper)
this_actor.info("Join sleeper (timeout 2)")
actor.join(2)

if __name__ == '__main__':
e = Engine(sys.argv)
e.load_platform(sys.argv[1])
Actor.create("master", Host.by_name("Tremblay"), master)
e.run()

11 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Actor execution model

Main points
mutual exclusion on actors
maestro dictates who run
(deterministic)
SG calls ≈ syscalls

interruption points inside
user-given functions

Various implementations
pthread: easy debug, slow
asm: blazing fast
ucontext, boost context...

SimGrid simulation process

Actor 0 Actor 1 Actor 2 Actor 3

Simulation data

Execution control (maestro)

User-given

user code

user code

start

end

send

compute

12 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Energy model (DVFS)

Resources have power states (DVFS)
SimGrid: Manually switch pstates, which change the flop rate
For one pstate, consumption = linear function of CPU use (+ idle jump)

13 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Energy model (ON/OFF)
ON ↔ OFF takes time (seconds) and energy (Joules)

Not easy for the noise: everybody wants something specific
SimGrid provides basic mechanisms, you have to help yourself
Switching ON/OFF is instantaneous

14 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Table of Contents

1 Introduction

2 SimGrid

3 Batsim

4 Coarse-grained simulation

5 Conclusion

15 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Overview

Resource management simulator built on top of SimGrid

Main use cases

Analyze and compare online resource management algorithms
Workload/platform dimensioning

Key features

Prototype scheduling algorithms in any programming language
Or use real schedulers (done on OAR and K8s, prototypes for flux/slurm)
Several job models (tunable level of realism) without deep SimGrid knowledge

16 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Overview (2)

Numbers

Exists since 2015
≈ 9k lines of C++ code
≈ 2k commits

Community

1-2 main developers at the same time
Get help easily (documentation, mattermost, mailing list)
Users are mostly from scientific labs (international), companies

17 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Architecture

scheduler
jobs
manager

resources
manager

real
platform

RJMS

simulated
platform

batsim

decision maker (RJMS + adaptor)

batsim
protocol

Real Batsim simulation

scheduler
jobs
manager

resources
manager

simulation
orchestrator

users

0 200 400 600 800 1000

0
10

20
30

40
50

time

lo
ad

workload

platform
control

input and
output

results
0 1000 2000 3000 4000 5000

Time (s)
0

20

40

60

80

100

120

M
a
ch

in
e
s

18 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Protocol

Simulating...

Something happened

Do this

Simulating...

Batsim
Process

Decision
Process Classical scheduling events

Job submitted
Job finished

Resource management decisions
Execute job j on M = {1, 2}
Shutdown M = {3, ..., 5}

Simulation/monitoring control
Call scheduler at t = 120
How much energy used?
How much data moved?

19 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Platform

SimGrid platform + some sugar

RJMS internals on master host

Disks modeled as speed=0 hosts
Enables parallel task use

lat (s)
bw (o/s)

lat (s)
bw (o/s)Links

spd (flop/s)

Hosts
(disks)

Link
(switch)

Link
(disks)

lat (s)
bw (o/s)

spd=0

Hosts
(nodes)

20 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Jobs and profiles
Jobs : scheduler view

User resource request
(Walltime)
Simulation profile

Profiles : simulator view
How to simulate the app?

Profile types
Fixed length
Parallel task
Trace replay (MPI...)
Composition (seq., parallel)
Convenient shortcuts

IO transfers (alone)
IO transfers (along task)

host1 host2 host3 host4

3e6

5e6

5e6

5e6

0

3e6

5e6

5e6

0

0

0

0

0

0

0

0

1e9 0 4e7 0

host1

host2

host3

host4

Compute

Comm

Sequence

(flop)

(o)

21 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Application model example: Stencil with checkpoints
1 Loads data from parallel filesystem
2 Iteration: local computations,

exchange data with neighbors
3 Every 100 iterations: dump

checkpoint on parallel file system
4 Stop after 1000 iterations.

Rank 0 Rank 1

Rank 2 Rank 3

Profile example
Bundle 100 iterations in 1 parallel task

Do 100 iterations

Checkpoint data

repeat 10 times

Load initial data

repeat 1 time

22 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Application model example: Stencil with checkpoints (code)

{ "initial_load": {
"type": "parallel_homogeneous_pfs",
"bytes_to_read": 67108864,
"bytes_to_write": 0,
"storage": "pfs" },

"100_iterations": {
"type": "parallel",
"cpu": [1e9, 1e9, 1e9, 1e9],
"com": [0, 819200, 819200, 0,

819200, 0, 0, 819200,
819200, 0, 0, 819200,

0, 819200, 819200, 0] },
"checkpoint": {

"type": "parallel_homogeneous_pfs",
"bytes_to_read": 0,
"bytes_to_write": 67108864,
"storage": "pfs" },

"iterations_and_checkpoints": {
"type": "composed",
"repeat": 10,
"seq": ["100_iterations", "checkpoint"] },

"imaginary_stencil": {
"type": "composed",
"repeat": 1,
"seq": ["initial_load", "iterations_and_checkpoints"] }

}

23 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Ecosystem and Usage
Ecosystem

Set of scheduling algorithms (C++, Python, Rust, D, Perl. . .)
Tools to generate platforms and workloads
(Interactive) tools to visualize/analyze Batsim results
Tools to help experiments (environment control, execution. . .)

Already used to study
Online scheduling heuristics
Energy/temperature management
Use of Machine Learning in scheduling
Big data / HPC convergence (best effort Spark jobs within HPC cluster)
with distributed file system (HDFS)
Evolving jobs with parallel file system + burst buffers
Impact of user behaviors
Fault tolerance

24 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Table of Contents

1 Introduction

2 SimGrid

3 Batsim

4 Coarse-grained simulation

5 Conclusion

25 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Profile evaluation from Batsim initial paper1

Experiment

Execute workloads with Batsim and on Grid’5000 (OAR)
Same scheduler implementation (conservative backfilling)
9 synthetic workloads (4h each)
Apps from NAS Parallel Benchmarks (IS, FT, LU), various sizes/classes
Job profiles generated from app instrumentation
Compare Gantt charts & scheduling objectives

Conclusions

Real ≈ simulated for all profiles (delay, ptask, MPI replay)
Observed no interference (network capacity > workload needs)

1Pierre-François Dutot et al. “Batsim: a Realistic Language-Independent Resources and Jobs
Management Systems Simulator”. In: Job Scheduling Strategies for Parallel Processing. 2015.

26 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Performance per profile type (2 synthetic workloads)

Reproduce repo. https://gitlab.inria.fr/adfaure/ptask_tit_eval
27 / 43

https://gitlab.inria.fr/adfaure/ptask_tit_eval

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Profile types comparison
What performance/accuracy trade-off?

Rigid delay
Very fast
Context-free
Rarely useful for apps
(dynamic injection)

Parallel task
Fast enough!
Coarse-grained interf.
Versatile & convenient
Not validated yet

MPI trace replay
Much slower
Fine-grained interf.
MPI only
Validated predictions
[CGS15]

Agregate MPI traces → huge accuracy drop, almost no performance gain :(

Parallel tasks’ accuracy needs to be evaluted

28 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Profile types comparison
What performance/accuracy trade-off?

Rigid delay
Very fast
Context-free
Rarely useful for apps
(dynamic injection)

Parallel task
Fast enough!
Coarse-grained interf.
Versatile & convenient
Not validated yet

MPI trace replay
Much slower
Fine-grained interf.
MPI only
Validated predictions
[CGS15]

Agregate MPI traces → huge accuracy drop, almost no performance gain :(

Parallel tasks’ accuracy needs to be evaluted

28 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Profile types comparison
What performance/accuracy trade-off?

Rigid delay
Very fast
Context-free
Rarely useful for apps
(dynamic injection)

Parallel task
Fast enough!
Coarse-grained interf.
Versatile & convenient
Not validated yet

MPI trace replay
Much slower
Fine-grained interf.
MPI only
Validated predictions
[CGS15]

Agregate MPI traces → huge accuracy drop, almost no performance gain :(

Parallel tasks’ accuracy needs to be evaluted
28 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Evaluate parallel tasks — platform setup

Platform network

Overdimensioned network
Need to create a contention point!

Split switch into two groups (subnets)
Inter-group comms via routing node

Grid’5000 platforms
Grisou and Paravance
Same homogeneous machines
Different switch

29 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Evaluate parallel tasks — platform setup

Reconfigured network

Overdimensioned network
Need to create a contention point!

Split switch into two groups (subnets)
Inter-group comms via routing node

Grid’5000 platforms
Grisou and Paravance
Same homogeneous machines
Different switch

29 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Evaluate parallel tasks — application and noise
Real application (matrix multiplication)

Matches parallel tasks hypotheses
Short compute & comm phases
→ Homogeneous progress

8 nodes per group (16 core / node)
Parameters

Block size
Sync / Async broadcasts

Noise
High traffic generation via tcpkali
1 node per group
Periodic (T = 60 s)

0 % noise : 60 s idle
25 % noise : 15 s traffic → 45 s idle

30 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Real runs behave as expected

31 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Ptask vs Reality
Results

Parallel task: 0 % point seems fine
Parallel task: consistent behavior
Real: Grisou & Paravance are
different

Questions
How to calibrate the 100 % point?
Why do Grisou & Paravance
switches’ behavior differs so much?

→ Run another experiment with a more complex noise
Noise always active
5 nodes per group for the noise
Many ways to connect noisy nodes together (random graph generation)

32 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Runtime vs Number of connections (real)

Grisou Paravance

0 10 20 30 0 10 20 30

0

50

100

150

Number of TCP connections

M
pi

 r
un

tim
e

Number of
host pairs

0

1

2

3

4

5

33 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Runtime vs Number of pairs (real)

Grisou Paravance

0 1 2 3 4 5 0 1 2 3 4 5

0

50

100

150

Number of host pairs

M
pi

 r
un

tim
e

Number of
connections

0

1

2

4

8

12

16

24

32

34 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Grisou/Paravance difference explained

Grisou
App performance correlated with number of TCP connections in noise
Noise connection location has no effect

Paravance
App performance correlated with number of different pairs of hosts in noise

Conclusions
Switches have a different sharing policy
SimGrid: Fair sharing among TCP connections regardless of their source/destination
→ Ignore Paravance for now

35 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Ptask vs Grisou — varying number of connections in noise

36 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Ptask vs Grisou — varying number of connections in noise

0

1000

2000

3000

4000

5000

0 10 20 30
Number of connections in noise

A
pp

lic
at

io
n

ru
nt

im
e

(s
)

Application ptask real smpi

Houston, we have a problem!
Huge overestimation when link
saturated by many connections
Number of connections inside ptasks
ignored by ptask_L07

Bad sharing when Big vs Small ptasks
No fix in ptask_L07
(recursive Max-Min Fairness)

→ New model implementation
Bottleck Max Fairness [BR15]

36 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Ptask-BMF vs Grisou — varying number of connections in noise

0

50

100

150

200

0 10 20 30
Number of connections in noise

A
pp

lic
at

io
n

ru
nt

im
e

(s
)

Application

ptask−bmf

real

smpi

37 / 43

Introduction SimGrid Batsim Coarse-grained simulation Conclusion

Take home message
This talk in a nutshell

SimGrid: sound toolkit to build your simulator
Batsim: study resource management, tunable profile granularity
ptask_bmf: very promising coarse-grained model

Many questions around ptask_bmf
BMF solution: existence but no uniqueness. . .
Termination of fast/greedy solvers?
Performance overhead?

Batsim
Validation of applications models?
Ongoing architecture overhaul

Single-process simulations
Flatbuffers serialization

38 / 43

Appendix

39 / 43

Max-min Fairness

1

2

The min function is not strictly increasing so
a recursive optimization is needed

Water-filling [BG87]
Allocate ϵ to each flow until a link is saturated (

∑
i Ai,jϵ = Cj)

Fix the saturated flows and repeat
Recursive bottleneck identification

For each link j , ϵj = Cj/
∑

Ai,j , consider ϵ = minj ϵj
Fix the saturated flows, update link capacity, and repeat

Low complexity, gracefully extends to weighted version, exploits the fact that Ai ,j ≥ 0

Slide from Arnaud Legrand. https://gitlab.inria.fr/alegrand/slides_fair_sharing
41 / 43

https://gitlab.inria.fr/alegrand/slides_fair_sharing

Bottleneck Max Fairness

max-min fairness ∼ "bottleneck resources are fairly shared"

Axiom : Every “flow” f has a bottleneck resource j s.t.∑
i Ai,jρi = Cj (the resource is saturated)

Af ,jρf = maxi Ai,jρj (f is active all the time)
⇝ Flows with the same bottleneck get the same share

Find |F| bottlenecks and solve A′ρ = C ′

It is quite a reasonable choice for streaming and parallel tasks

Slide from Arnaud Legrand. https://gitlab.inria.fr/alegrand/slides_fair_sharing
42 / 43

https://gitlab.inria.fr/alegrand/slides_fair_sharing

References I

[PML15] Jose A Pascual, Jose Miguel-Alonso, and Jose A Lozano. “Locality-aware
policies to improve job scheduling on 3D tori”. In: The Journal of
Supercomputing 71.3 (2015), pp. 966–994.

[Dut+15] Pierre-François Dutot et al. “Batsim: a Realistic Language-Independent
Resources and Jobs Management Systems Simulator”. In: Job Scheduling
Strategies for Parallel Processing. 2015.

[CGS15] Henri Casanova, Anshul Gupta, and Frédéric Suter. “Toward more scalable
off-line simulations of MPI applications”. In: Parallel Processing Letters
25.03 (2015), p. 1541002.

[BR15] Thomas Bonald and James Roberts. “Multi-resource fairness: Objectives,
algorithms and performance”. In: Proceedings of the 2015 ACM
SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems. 2015, pp. 31–42.

43 / 43

References II

[BG87] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, 1987.

44 / 43

	Introduction
	SimGrid
	Models

	Batsim
	Models
	Ecosystem and Usage

	Coarse-grained simulation
	Conclusion
	Appendix

