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Study distributed systems and applications

Many distributed systems in use today (HPC, Clouds. . . ) and tomorrow (Edge, Fog?)

Complex platforms with many issues (energy, fault tolerance, scheduling, scalability,
heterogeneity. . . )

Methodological approaches

Direct experimentation (real applications on real platforms)
Simulation (application models on platforms models)
Something in between (emulation, partial simulation. . . )
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Building simulators from scratch is risky

How useful is a simulator whose results cannot be trusted?

Models validated?
Implementation tested?
Model instantiation evaluated?

Doing it thoroughly may take (dozens of) years!

Using SimGrid (or any validated simulation frameworks) helps a lot

Thoroughly validated models
Thoroughly tested implementation
Model instantiation responsibility is still on you
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Overview

Simulation framework around distributed platforms and applications

Main use cases

Develop digital twins of distributed applications
Evaluate various platform topologies/configurations
Prototype systems or algorithms

Key features

Sound/accurate models: theoretically and experimentally evaluated
Scalable: fast models and implementations
Usable: LGPL, linux/mac/windows, C++ Python and Java
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Overview (2)

Numbers

Exists since early 2001, development still very active
≈ 200k lines of C/C++ code
≈ 35k commits
Used in 500+ scientific articles

Community

4 main developers
Many power users (current/previous PhD. students. . . )
Get help easily (documentation, mailing list, irc, mattermost. . . )
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Architecture

How to build your simulator?

Use one of the SimGrid interfaces
Link the SimGrid library with your code

Available interfaces

SMPI: smpicc/smpirun on your real MPI code
S4U: write your own simulator (actors, messages), C++ C or Python
MSG: older brother of S4U, C or Java
MC: verify properties on your application model (model is code)
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Platform and network models
Platform = graph of hosts and links

Hosts : computational resources
Speed (FLOP per second)

Links : network resources (cables,
switches, routers...)

Latency (seconds)
Bandwidth (bytes per second)

Several network models available
Fast flow-level: slow start, TCP
congestion, cross-traffic
Constant time: a bit faster
(unrealistic)
Packet-level: NS-3 binding

lat (s)
bw (o/s)

lat (s)
bw (o/s)Links

spd (flop/s)

Link
(switch)

Hosts
(nodes)
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Actors, computations and communications

Actors

One of the simulation actors — AKA agent, thread, process. . .
Executes user-given code on a Host
User-given code may contain SimGrid calls

Main SimGrid calls

Compute x flops on current host
Send x bytes to an actor/host/mailbox
Yield (just interrupt control flow)
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S4U simulator example (Python)
from simgrid import Actor, Engine, Host, this_actor

def sleeper():
this_actor.info("Sleeper started")
this_actor.sleep_for(1)
this_actor.info("I'm done. See you!")

def master():
this_actor.execute(64)
actor = Actor.create("sleeper", Host.current(), sleeper)
this_actor.info("Join sleeper (timeout 2)")
actor.join(2)

if __name__ == '__main__':
e = Engine(sys.argv)
e.load_platform(sys.argv[1])
Actor.create("master", Host.by_name("Tremblay"), master)
e.run()
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Actor execution model

Main points
mutual exclusion on actors
maestro dictates who run
(deterministic)
SG calls ≈ syscalls

interruption points inside
user-given functions

Various implementations
pthread: easy debug, slow
asm: blazing fast
ucontext, boost context...

SimGrid simulation process

Actor 0 Actor 1 Actor 2 Actor 3

Simulation data

Execution control (maestro)

User-given

user code

user code

start

end

send

compute
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Energy model (DVFS)
Modern CPUs can reduce computation speed to save energy
Power states: levels of performance. Governors pick them
SimGrid: Manually switch pstates, which change the flop rate
For each pstate, power consumption is a linear function of CPU use
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Energy model (ON/OFF)
ON ↔ OFF takes time (seconds) and energy (Joules)

Not easy for the noise: everybody wants something specific
SimGrid provides basic mechanisms, you have to help yourself
Switching ON/OFF is instantaneous
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Real usage example: StarPU’s digital twin

StarPU
Task programming library/runtime for hybrid architectures
Input: graph of tasks (using StarPU library or OpenMP)
Input: CPU/GPU/both implementation for each task
Executes your application with optimized scheduling

How to do this digital twin?
Copy/paste StarPU’s code
Use SimGrid actors and computations/communications calls
(working prototype within a few days)
(Do some optimizations — e.g., replace real code by performance models)

How is it used?
Test/tune performance of scheduling algo/parameters on many simulated platforms
Scalability tests at low energy footprint
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Overview

Resource management simulator built on top of SimGrid

Main use cases

Analyze and compare online scheduling algorithms
Workload/platform dimensioning

Key features

Prototype scheduling algorithms in any programming language
Or use real schedulers (done on OAR and K8s, prototypes for flux/slurm)
Several job models (tunable level of realism) without deep SimGrid knowledge
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Overview (2)

Numbers

Exists since 2015
≈ 9k lines of C++ code
≈ 2k commits

Community

1-2 main developers at the same time
Mostly used by PhD. students/interns from scientific labs so far
Get help easily (documentation, mailing list, mattermost)

15 / 24



Introduction SimGrid Batsim Conclusion

Architecture

scheduler
jobs
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Real Batsim simulation
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Protocol

Simulating...

Something happened

Do this

Simulating...

Batsim
Process

Decision
Process Classical scheduling events

Job submitted
Job finished

Resource management decisions
Execute job j on M = {1, 2}
Shutdown M = {3, ..., 5}

Simulation/monitoring control
Call scheduler at t = 120
How much energy used?
How much data moved?
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Platform

SimGrid platform + some sugar

RJMS internals on master host

Disks modeled as speed=0 hosts
Enables parallel task use

lat (s)
bw (o/s)

lat (s)
bw (o/s)Links

spd (flop/s)

Hosts
(disks)

Link
(switch)

Link
(disks)

lat (s)
bw (o/s)

spd=0

Hosts
(nodes)

18 / 24



Introduction SimGrid Batsim Conclusion

Shutdown model

Batsim implements a DVFS and simple shutdown model on top of SimGrid’s
instantaneous power states (pstates).

Computation pstates: DVFS states
Sleep pstates: cannot compute anything – e.g., ACPI S1, S3, S4 or S5
Transition (virtual) pstates: used internally to simulate the transition into/from
sleep pstates

Transition costs can be set for each host, for each pair of pstates.
computation → computation: 0
computation → sleep: fixed amount of time and energy (shutdown)
sleep → computation: fixed amount of time and energy (boot=)
sleep → sleep: forbidden, use an intermediate computation pstate
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Jobs and profiles
Jobs : scheduler view

User resource request
(Walltime)
Simulation profile

Profiles : simulator view
How to simulate the app?

Profile types
Fixed length
Parallel task
MPI trace replay
Sequence
Convenient shortcuts

IO transfers (alone)
IO transfers (along- task)
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Application model example: Stencil with checkpoints
1 Loads data from parallel filesystem
2 Iteration: local computations,

exchange data with neighbors
3 Every 100 iterations: dump

checkpoint on parallel file system
4 Stop after 1000 iterations.

Rank 0 Rank 1

Rank 2 Rank 3

Profile example
Bundle 100 iterations in 1 parallel task

Do 100 iterations

Checkpoint data

repeat 10 times

Load initial data

repeat 1 time
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Application model example: Stencil with checkpoints (code)

{ "initial_load": {
"type": "parallel_homogeneous_pfs",
"bytes_to_read": 67108864,
"bytes_to_write": 0,
"storage": "pfs" },

"100_iterations": {
"type": "parallel",
"cpu": [ 1e9, 1e9, 1e9, 1e9],
"com": [ 0, 819200, 819200, 0,

819200, 0, 0, 819200,
819200, 0, 0, 819200,

0, 819200, 819200, 0] },
"checkpoint": {

"type": "parallel_homogeneous_pfs",
"bytes_to_read": 0,
"bytes_to_write": 67108864,
"storage": "pfs" },

"iterations_and_checkpoints": {
"type": "composed",
"repeat": 10,
"seq": ["100_iterations", "checkpoint"] },

"imaginary_stencil": {
"type": "composed",
"repeat": 1,
"seq": ["initial_load", "iterations_and_checkpoints"] }

}
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Ecosystem and Usage

Ecosystem

Set of scheduling algorithms (C++, Python, Rust, D, Perl. . . )
Tools to generate platforms and workloads
(Interactive) tools to visualize/analyze Batsim results
Tools to help experiments (environment control, execution. . . )

Already used to study

Energy/temperature related scheduling heuristics
Big data / HPC convergence (best effort Spark jobs within HPC cluster)
with distributed file system (HDFS)
Evolving jobs with parallel file system + burst buffers
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Conclusion

Take home message

Simulation is a precious tool to study distributed systems/applications
SimGrid: 20 years of model (in)validation and optimizations
Give SimGrid a try, it may save you a lot of time
Batsim: Specialized SimGrid use around resource management

Thanks! :)

millian.poquet@irit.fr
https://framateam.org/simgrid/channels/town-square
https://framateam.org/batsim/channels/town-square
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