
Introduction SimGrid Batsim Conclusion

SimGrid and Batsim Overview

Millian Poquet

2023-02-23

1 / 24

Introduction SimGrid Batsim Conclusion

Study distributed systems and applications

Many distributed systems in use today (HPC, Clouds. . .) and tomorrow (Edge, Fog?)

Complex platforms with many issues (energy, fault tolerance, scheduling, scalability,
heterogeneity. . .)

Methodological approaches

Direct experimentation (real applications on real platforms)
Simulation (application models on platforms models)
Something in between (emulation, partial simulation. . .)

2 / 24

Introduction SimGrid Batsim Conclusion

Building simulators from scratch is risky

How useful is a simulator whose results cannot be trusted?

Models validated?
Implementation tested?
Model instantiation evaluated?

Doing it thoroughly may take (dozens of) years!

Using SimGrid (or any validated simulation frameworks) helps a lot

Thoroughly validated models
Thoroughly tested implementation
Model instantiation responsibility is still on you

3 / 24

Introduction SimGrid Batsim Conclusion

Overview

Simulation framework around distributed platforms and applications

Main use cases

Develop digital twins of distributed applications
Evaluate various platform topologies/configurations
Prototype systems or algorithms

Key features

Sound/accurate models: theoretically and experimentally evaluated
Scalable: fast models and implementations
Usable: LGPL, linux/mac/windows, C++ Python and Java

4 / 24

Introduction SimGrid Batsim Conclusion

Overview (2)

Numbers

Exists since early 2001, development still very active
≈ 200k lines of C/C++ code
≈ 35k commits
Used in 500+ scientific articles

Community

4 main developers
Many power users (current/previous PhD. students. . .)
Get help easily (documentation, mailing list, irc, mattermost. . .)

5 / 24

Introduction SimGrid Batsim Conclusion

Architecture

How to build your simulator?

Use one of the SimGrid interfaces
Link the SimGrid library with your code

Available interfaces

SMPI: smpicc/smpirun on your real MPI code
S4U: write your own simulator (actors, messages), C++ C or Python
MSG: older brother of S4U, C or Java
MC: verify properties on your application model (model is code)

6 / 24

Introduction SimGrid Batsim Conclusion

Platform and network models
Platform = graph of hosts and links

Hosts : computational resources
Speed (FLOP per second)

Links : network resources (cables,
switches, routers...)

Latency (seconds)
Bandwidth (bytes per second)

Several network models available
Fast flow-level: slow start, TCP
congestion, cross-traffic
Constant time: a bit faster
(unrealistic)
Packet-level: NS-3 binding

lat (s)
bw (o/s)

lat (s)
bw (o/s)Links

spd (flop/s)

Link
(switch)

Hosts
(nodes)

7 / 24

Introduction SimGrid Batsim Conclusion

Actors, computations and communications

Actors

One of the simulation actors — AKA agent, thread, process. . .
Executes user-given code on a Host
User-given code may contain SimGrid calls

Main SimGrid calls

Compute x flops on current host
Send x bytes to an actor/host/mailbox
Yield (just interrupt control flow)

8 / 24

Introduction SimGrid Batsim Conclusion

S4U simulator example (Python)
from simgrid import Actor, Engine, Host, this_actor

def sleeper():
this_actor.info("Sleeper started")
this_actor.sleep_for(1)
this_actor.info("I'm done. See you!")

def master():
this_actor.execute(64)
actor = Actor.create("sleeper", Host.current(), sleeper)
this_actor.info("Join sleeper (timeout 2)")
actor.join(2)

if __name__ == '__main__':
e = Engine(sys.argv)
e.load_platform(sys.argv[1])
Actor.create("master", Host.by_name("Tremblay"), master)
e.run()

9 / 24

Introduction SimGrid Batsim Conclusion

Actor execution model

Main points
mutual exclusion on actors
maestro dictates who run
(deterministic)
SG calls ≈ syscalls

interruption points inside
user-given functions

Various implementations
pthread: easy debug, slow
asm: blazing fast
ucontext, boost context...

SimGrid simulation process

Actor 0 Actor 1 Actor 2 Actor 3

Simulation data

Execution control (maestro)

User-given

user code

user code

start

end

send

compute

10 / 24

Introduction SimGrid Batsim Conclusion

Energy model (DVFS)
Modern CPUs can reduce computation speed to save energy
Power states: levels of performance. Governors pick them
SimGrid: Manually switch pstates, which change the flop rate
For each pstate, power consumption is a linear function of CPU use

11 / 24

Introduction SimGrid Batsim Conclusion

Energy model (ON/OFF)
ON ↔ OFF takes time (seconds) and energy (Joules)

Not easy for the noise: everybody wants something specific
SimGrid provides basic mechanisms, you have to help yourself
Switching ON/OFF is instantaneous

12 / 24

Introduction SimGrid Batsim Conclusion

Real usage example: StarPU’s digital twin

StarPU
Task programming library/runtime for hybrid architectures
Input: graph of tasks (using StarPU library or OpenMP)
Input: CPU/GPU/both implementation for each task
Executes your application with optimized scheduling

How to do this digital twin?
Copy/paste StarPU’s code
Use SimGrid actors and computations/communications calls
(working prototype within a few days)
(Do some optimizations — e.g., replace real code by performance models)

How is it used?
Test/tune performance of scheduling algo/parameters on many simulated platforms
Scalability tests at low energy footprint

13 / 24

Introduction SimGrid Batsim Conclusion

Overview

Resource management simulator built on top of SimGrid

Main use cases

Analyze and compare online scheduling algorithms
Workload/platform dimensioning

Key features

Prototype scheduling algorithms in any programming language
Or use real schedulers (done on OAR and K8s, prototypes for flux/slurm)
Several job models (tunable level of realism) without deep SimGrid knowledge

14 / 24

Introduction SimGrid Batsim Conclusion

Overview (2)

Numbers

Exists since 2015
≈ 9k lines of C++ code
≈ 2k commits

Community

1-2 main developers at the same time
Mostly used by PhD. students/interns from scientific labs so far
Get help easily (documentation, mailing list, mattermost)

15 / 24

Introduction SimGrid Batsim Conclusion

Architecture

scheduler
jobs
manager

resources
manager

real
platform

RJMS

simulated
platform

batsim

decision maker (RJMS + adaptor)

batsim
protocol

Real Batsim simulation

scheduler
jobs
manager

resources
manager

simulation
orchestrator

users

0 200 400 600 800 1000

0
10

20
30

40
50

time

lo
ad

workload

platform
control

input and
output

results
0 1000 2000 3000 4000 5000

Time (s)
0

20

40

60

80

100

120

M
a
ch

in
e
s

1

2

3

4

4

5
6

7

8

8

9

9

9

10

11

12

13

14

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

28

29

30

31

31

32

33

34

34
35

36

37

38

38

38

39

39

40
41

42

42
43

44

45
46

47

47

48

49
50

50

51

51

52

52

53

54

54

54

55

56

57

57
58

59

60

61
62

63

63

63

64

65

65

66

67

68

69

69

70

71

72

73

74

75

76
77

77
78

78

79
80

81

81
82

82
83
84

85

85

85

85

86
87

88

88

89

90

91

92

93

93
94

95

96
97
98

99

100

101
102

102

103

104

105

106
107
108
109

110

111

111

112

113

113
114115

116

116

117

118

119

119

120

120

121

121

122

123

124

124

124

16 / 24

Introduction SimGrid Batsim Conclusion

Protocol

Simulating...

Something happened

Do this

Simulating...

Batsim
Process

Decision
Process Classical scheduling events

Job submitted
Job finished

Resource management decisions
Execute job j on M = {1, 2}
Shutdown M = {3, ..., 5}

Simulation/monitoring control
Call scheduler at t = 120
How much energy used?
How much data moved?

17 / 24

Introduction SimGrid Batsim Conclusion

Platform

SimGrid platform + some sugar

RJMS internals on master host

Disks modeled as speed=0 hosts
Enables parallel task use

lat (s)
bw (o/s)

lat (s)
bw (o/s)Links

spd (flop/s)

Hosts
(disks)

Link
(switch)

Link
(disks)

lat (s)
bw (o/s)

spd=0

Hosts
(nodes)

18 / 24

Introduction SimGrid Batsim Conclusion

Shutdown model

Batsim implements a DVFS and simple shutdown model on top of SimGrid’s
instantaneous power states (pstates).

Computation pstates: DVFS states
Sleep pstates: cannot compute anything – e.g., ACPI S1, S3, S4 or S5
Transition (virtual) pstates: used internally to simulate the transition into/from
sleep pstates

Transition costs can be set for each host, for each pair of pstates.
computation → computation: 0
computation → sleep: fixed amount of time and energy (shutdown)
sleep → computation: fixed amount of time and energy (boot=)
sleep → sleep: forbidden, use an intermediate computation pstate

19 / 24

Introduction SimGrid Batsim Conclusion

Jobs and profiles
Jobs : scheduler view

User resource request
(Walltime)
Simulation profile

Profiles : simulator view
How to simulate the app?

Profile types
Fixed length
Parallel task
MPI trace replay
Sequence
Convenient shortcuts

IO transfers (alone)
IO transfers (along- task)

host1 host2 host3 host4

3e6

5e6

5e6

5e6

0

3e6

5e6

5e6

0

0

0

0

0

0

0

0

1e9 0 4e7 0

host1

host2

host3

host4

Compute

Comm

Sequence

(flop)

(o)

20 / 24

Introduction SimGrid Batsim Conclusion

Application model example: Stencil with checkpoints
1 Loads data from parallel filesystem
2 Iteration: local computations,

exchange data with neighbors
3 Every 100 iterations: dump

checkpoint on parallel file system
4 Stop after 1000 iterations.

Rank 0 Rank 1

Rank 2 Rank 3

Profile example
Bundle 100 iterations in 1 parallel task

Do 100 iterations

Checkpoint data

repeat 10 times

Load initial data

repeat 1 time

21 / 24

Introduction SimGrid Batsim Conclusion

Application model example: Stencil with checkpoints (code)

{ "initial_load": {
"type": "parallel_homogeneous_pfs",
"bytes_to_read": 67108864,
"bytes_to_write": 0,
"storage": "pfs" },

"100_iterations": {
"type": "parallel",
"cpu": [1e9, 1e9, 1e9, 1e9],
"com": [0, 819200, 819200, 0,

819200, 0, 0, 819200,
819200, 0, 0, 819200,

0, 819200, 819200, 0] },
"checkpoint": {

"type": "parallel_homogeneous_pfs",
"bytes_to_read": 0,
"bytes_to_write": 67108864,
"storage": "pfs" },

"iterations_and_checkpoints": {
"type": "composed",
"repeat": 10,
"seq": ["100_iterations", "checkpoint"] },

"imaginary_stencil": {
"type": "composed",
"repeat": 1,
"seq": ["initial_load", "iterations_and_checkpoints"] }

}

22 / 24

Introduction SimGrid Batsim Conclusion

Ecosystem and Usage

Ecosystem

Set of scheduling algorithms (C++, Python, Rust, D, Perl. . .)
Tools to generate platforms and workloads
(Interactive) tools to visualize/analyze Batsim results
Tools to help experiments (environment control, execution. . .)

Already used to study

Energy/temperature related scheduling heuristics
Big data / HPC convergence (best effort Spark jobs within HPC cluster)
with distributed file system (HDFS)
Evolving jobs with parallel file system + burst buffers

23 / 24

Introduction SimGrid Batsim Conclusion

Conclusion

Take home message

Simulation is a precious tool to study distributed systems/applications
SimGrid: 20 years of model (in)validation and optimizations
Give SimGrid a try, it may save you a lot of time
Batsim: Specialized SimGrid use around resource management

Thanks! :)

millian.poquet@irit.fr
https://framateam.org/simgrid/channels/town-square
https://framateam.org/batsim/channels/town-square

24 / 24

	Introduction
	SimGrid
	Models

	Batsim
	Models
	Ecosystem and Usage

	Conclusion

