
Experimenting for the Worst-Case Reviewer
Tools and Tips for REP Hygiene
IRIT PhD days – ASR department

Millian Poquet

2025-07-08

Who am I?

Millian Poquet
• MCF Univ. Toulouse / IRIT
• millian.poquet@irit.fr
• https://mpoquet.github.io ← slides available

Research interests
• Resource management on distributed systems
• Energy & performance optimization
• Sustainability
• How to experiment on these systems (simulation, real)

Propaganda / bias warning
• Long-term Nix user, NixOS maintainer
• Long-term Grid’5000 user, IRIT group co-manager

1 / 59

https://mpoquet.github.io

Introduction

Stories

Story 1 – Bob is writing its manuscript
When redoing graphs for manuscript, he finds out results have completely changed :(

Story 2 – Bob left, Alice wants to continue his work
Cannot find/run/modify existing work without great effort :(

3 / 59

This talk in a nutshell

Have you read this paper?
• Want People to Read Your Paper? Consider the Worst-Case Reviewer¹

¹https://www.sigarch.org/want-people-to-read-your-paper-consider-the-worst-case-reviewer/
4 / 59

https://www.sigarch.org/want-people-to-read-your-paper-consider-the-worst-case-reviewer/

This talk in a nutshell

Have you read this paper?
• Want People to Read Your Paper? Consider the Worst-Case Reviewer¹

This talk focuses on making your experiments robust to the Worst-Case Reviewer – that’s me

Side effects
• Increased likelihood of papers accepted
• Increased likelihood of work being reused
• Increased likelihood of gaining insights?

¹https://www.sigarch.org/want-people-to-read-your-paper-consider-the-worst-case-reviewer/
4 / 59

https://www.sigarch.org/want-people-to-read-your-paper-consider-the-worst-case-reviewer/

Outline

Introduction
REP & what can go wrong

Nix
Grid’5000

Artifact
Methods

Conclusion

5 / 59

REP & what can go wrong

REP definitions

ACM terminology¹ as of 2020-08-24
• REPeatability (same team, same experimental setup)
• REProducibility (different team, same experimental setup)
• REPlicability (different team, different experimental setup)

Reproducibility definition

The measurement can be obtained with stated precision by a different team using the
same measurement procedure, the same measuring system, under the same operating
conditions, in the same or a different location on multiple trials. For computational
experiments, this means that an independent group can obtain the same result using the
author’s own artifacts.

¹https://www.acm.org/publications/policies/artifact-review-and-badging-current
7 / 59

https://www.acm.org/publications/policies/artifact-review-and-badging-current

My opinion of these definitions

Positives
• Attempt to standardize terminology
• Same/different team encompasses many problems — lack of code, lack of doc…

Negatives
• Very vague. What kind of measurement? What kind of measurement procedure?
• Statistical REP? Binary REP?
• REP with mutability?
• Longevity of REP?

8 / 59

What can go wrong? vague software (algo ≠ implem)

It is common to see simple subtaks not detailed in algorithms in papers — e.g., tolower(s)
• But how they are implemented can change the results of your experimental setup :/

9 / 59

What can go wrong? vague software (algo ≠ implem)

It is common to see simple subtaks not detailed in algorithms in papers — e.g., tolower(s)
• But how they are implemented can change the results of your experimental setup :/

void tolower_simple_libc(const char *input, char *output, size_t size) {
 unsigned int usize = (unsigned int)size;
 for (unsigned int i = 0; i < usize; i++) {
 output[i] = tolower((unsigned char)input[i]);
 }
}

9 / 59

What can go wrong? vague software (algo ≠ implem)

It is common to see simple subtaks not detailed in algorithms in papers — e.g., tolower(s)
• But how they are implemented can change the results of your experimental setup :/

void tolower_simple_libc(const char *input, char *output, size_t size) {
 unsigned int usize = (unsigned int)size;
 for (unsigned int i = 0; i < usize; i++) {
 output[i] = tolower((unsigned char)input[i]);
 }
}

void tolower_simple_diy(const char *input, char *output, size_t size) {
 unsigned int usize = (unsigned int)size;
 for (unsigned int i = 0; i < usize; i++) {
 char c = input[i];
 if (c >= 'A' && c <= 'Z') {
 output[i] = c + 32;
 } else {
 output[i] = c;
 }
 }
}

9 / 59

What can go wrong? vague software (algo ≠ implem)

void tolower_vec(const char *input, char *output, size_t size) {
 const __m256i a_minus1 = _mm256_set1_epi8('A' - 1);
 const __m256i z_plus1 = _mm256_set1_epi8('Z' + 1);
 const __m256i delta = _mm256_set1_epi8(32);
 unsigned int usize = (unsigned int)size;
 unsigned int vec_chunks = usize / 32;

 for (unsigned int i = 0; i < vec_chunks; i++) {
 unsigned int offset = i * 32;
 __m256i data = _mm256_loadu_si256((const __m256i*)(input + offset));
 __m256i mask_upper = _mm256_and_si256(
 _mm256_cmpgt_epi8(data, a_minus1),
 _mm256_cmpgt_epi8(z_plus1, data)
);
 __m256i result = _mm256_or_si256(
 _mm256_and_si256(mask_upper, _mm256_add_epi8(data, delta)),
 _mm256_andnot_si256(mask_upper, data)
);
 _mm256_storeu_si256((__m256i*)(output + offset), result);
 }
}

10 / 59

What can go wrong? vague software (algo ≠ implem) — performance

11 / 59

What can go wrong? compilation options

12 / 59

What can go wrong? compilation environment (option=-O2)

13 / 59

What can go wrong? “homogeneous” machines – dahu cluster, vec, gcc14, -O2

14 / 59

What can go wrong? “homogeneous” machines

TODO :(

Previous microbenchmark only uses memory and CPU
• CPU have usually similar performance in the same cluster
• That’s not the case of other components – e.g., disks

15 / 59

What can go wrong? different machines

TODO :(

Da Costa, G. Power, performance and system measures of HPC benchmarks on multiple hardware
https://doi.org/10.5281/zenodo.10982239

16 / 59

https://doi.org/10.5281/zenodo.10982239

What can go wrong? filesystem

TODO :(

Preliminary run (no repetition) with commands such as this one:

 fio --randrepeat=1 --ioengine=libaio --direct=0 --gtod_reduce=1 \
 --name=test --numjobs=32 --bs=4k --iodepth=64 --readwrite=randrw \
 --rwmixread=75 --size=256M --filename=/tmp/tmpfs/testfile

Gave results such as these ones:

storage fs read bw (MiB/s) write bw (MiB/s)
local ssd tmpfs 4759 1586
local ssd ext4 2741 914
local ssd overlayfs 1676 559
remote ? nfs 490 164

17 / 59

What can go wrong? version of your software

TODO :(

Example: 1 Batsim commit divided execution time by 2 — remove printf in critical path

18 / 59

What can go wrong? version of some software (dep)

TODO :(

Example: external Batsim users used Batsim with SimGrid compiled without any optimization
Problem: SimGrid has a HUGE impact on performance
• SimGrid does user-space scheduling
• SimGrid solves hard resource sharing problem for each simulation time step

Execution time of 1 simulation, big picture:
• on my PhD laptop, with optimizations: < 1 s
• on external user’s machine, without optimization: timeout after several minutes

19 / 59

What can go wrong? CPU freq changed

TODO :(

Da Costa, G. Power, performance and system measures of HPC benchmarks on multiple hardware
https://doi.org/10.5281/zenodo.10982239_

20 / 59

https://doi.org/10.5281/zenodo.10982239_

What can go wrong? kernel

TODO :(

Idea
• Kernel versions can have impact on (functional) results
• Some kernel options have strong impact on performance (mitigations, scheduling…)

21 / 59

What can go wrong? external resource has changed/disappeared 🙀

Data service
• Input data lost

Source forge
• Google code
• Inria’s gforge
• When will GitHub disappear?

Hardware
• :(

22 / 59

What can go wrong? Summary

Impact?
• Can no longer run anything
• Can run but main outputs differ (binary or statistical diff)
• Can run but non-functional metrics differ (performance, power…)

Why?
• Unreliable external sources (random service, closed-source stuff…)
• Uncontrolled software

‣ Your software
‣ Your dependencies
‣ OS and various hidden services

• Uncontrolled hardware
‣ State: voltage/frequency, temperature…
‣ (Real) network connections…

23 / 59

Expe & control

Slide from SMPE¹′s lecture on Design of Experiments

Blackbox model for the system under study
• All inputs may not be known

‣ Some can be controlled
‣ Some cannot

• All outputs may not be known

Controllable factors

Uncontrollable factors

Inputs Outputs
System

Main idea
• Define the set of relevant response
• Determine the set of relevant factors/variables

¹https://github.com/alegrand/SMPE
24 / 59

https://github.com/alegrand/SMPE

What should be controlled? How?

IMO, as much as is reasonably possible and is useful for your experiment
• Your software : your code + all your user-space dependencies
• Your software execution environment: how your software is run
• OS config & version
• Hardware setup

Even if you don’t control it, try to carefully record factors you think relevant
In particular, timestamps allow to check many things a posteriori

Enabling control with mutability is critical in computer science IMO
• Performance strongly depends on hardware/software environments, that evolve

25 / 59

What should be controlled? How?

IMO, as much as is reasonably possible and is useful for your experiment
• Your software : your code + all your user-space dependencies
• Your software execution environment: how your software is run
• OS config & version
• Hardware setup

Even if you don’t control it, try to carefully record factors you think relevant
In particular, timestamps allow to check many things a posteriori

Enabling control with mutability is critical in computer science IMO
• Performance strongly depends on hardware/software environments, that evolve

The next sections of this talk give examples on how to control
• Your user-space software via Nix
• Some OS config/version & hardware setup via Grid’5000

25 / 59

Nix

Nix’s main idea

Definition

An operation is said to have a side effect if it has any observable effect other than its
primary effect of reading the value of its arguments and returning a value to the invoker
of the operation.

27 / 59

Nix’s main idea

Definition

An operation is said to have a side effect if it has any observable effect other than its
primary effect of reading the value of its arguments and returning a value to the invoker
of the operation.

How to manage software without side effects ?
• Immutable file system to store packages
• Pure functions to build packages
• Cryptographic hashes for external data (source code…)

27 / 59

What is Nix?

Nix: package manager
• Download, store and install packages
• Get into tmp well-defined environments (shells)

‣ virtualenv, but for any language
‣ docker run, but without isolation

Nix: programming language
• λ DSL
• Define how to build packages
• Define environments (set of packages)

NixOS: Linux distribution
• Declarative system config via Nix language
• Sources: https://github.com/NixOS/nixpkgs

28 / 59

https://github.com/NixOS/nixpkgs

How to store packages?

Filesystem Hierarchy Standard
• All packages merged together
• Multiversion is tedious
• Always in the default environment

‣ ELFs with vague deps – require libmylib.so
‣ Libs from default paths (/lib, /usr/lib, or ldconfig)
‣ PATH to default paths or hacked

/usr
bin

program
lib

libc.so
libmylib.so

29 / 59

How to store packages?

Nix Store
• Each package in its own directory + links
• Naming: hash of inputs + package name + package “version”
• Precise dependencies

‣ ELFs have set DT_RUNPATH
‣ Wrapper scripts to set PATH, PYTHONPATH…

/nix/store
y9zg6ryffgc5c9y67fcmfdkyyiivjzpj-glibc-2.27

lib
libc.so

nc5qbagm3wqfg2lv1gwj3r3bn88dpqr8-mypkg-0.1.0
bin

program
lib

libmylib.so
30 / 59

How does Nix achieve purity?

Main ideas
• Content hash used for external data (source code / bootstrap)
• Packages are built in a sandbox (Linux namespaces)

‣ Controlled builder args and env vars
‣ No filesystem access outside of build script / sources / deps
‣ No network/ipc/… access

Workflow to build a package
1. Build all deps
2. Run build in sandbox

• Input: build script (read-only)
• Inputs: all deps paths (read-only)
• Outputs: temp dirs

3. temp dirs → Store (DB transaction)
Filesystem view
from sandbox

/
nix/store

[a]-gcc
[b]-mydep1
[c]-mydep2

build
out

/
nix/store

[a]-gcc
[b]-mydep1
[c]-mydep2
...

...
tmp

tmp.01
tmp.02

31 / 59

How does Nix achieve purity? derivation tree

TODO :(

Idea: Tree of λ calls
• Leaves: content-hashed external data (sources, bootstrap compilers)
• Intermediate nodes: compilers, your indirect dependencies, your direct dependencies
• Root: your package

32 / 59

Nix λ example – explicit hello world package

{ stdenv }:

stdenv.mkDerivation {
 name = "hello";
 src = ./.;

 phases = ["unpackPhase" "buildPhase" "installPhase"];
 # default unpackPhase is used
 buildPhase = ''
 gcc -o ./hello ./hello.c
 '';
 installPhase = ''
 mkdir -p $out/bin
 mv ./hello $out/bin/
 '';
}

Entry points
1. prePhases
2. unpackPhase
3. patchPhase
4. (pre)configurePhase
5. (pre)buildPhase
6. checkPhase
7. (pre)installPhase
8. …
9. postPhases

Customized by
• setting phases
• using another builder

33 / 59

Nix λ example – real package, using a build system

{ stdenv, fetchgit, meson, ninja, pkg-config, boost, gtest }:

stdenv.mkDerivation rec {
 pname = "intervalset";
 version = "1.2.0";
 src = fetchgit {
 url = "https://framagit.org/batsim/intervalset.git";
 rev = "v${version}";
 hash = "sha256-+mG5cPgB+wAxao/8epXWrWcyvYmzmc8Un6At+6U00qs=";
 };
 buildInputs = [meson ninja pkg-config boost gtest];
 # configurePhase = "meson build";
 # buildPhase = "meson compile -C build";
 # checkPhase = "meson test -C build";
 # installPhase = "meson install -C build";
}

Usual build layers
• Package manager: nix, apt…
• Build system: meson, cmake…
• DAG builder: ninja, make…
• Compiler: clang, gcc…

34 / 59

Package customization – tune λ args via override

packages = rec {
 intervalset = pkgs.callPackage ./intervalset.nix { };
 intervalset-as-debian10 = intervalset.override {
 boost = boost-167;
 meson = meson-049;
 };

 boost-176 = ...;
 boost-167 = ...;
 boost = boost-176;

 meson-058 = ...;
 meson-049 = ...;
 meson = meson-058;
};

35 / 59

Package customization – tune λ definition via overrideAttrs

packages = rec {
 intervalset = pkgs.callPackage ./intervalset.nix { };
 intervalset-110 = intervalset.overrideAttrs (old: rec {
 version = "1.1.0";
 src = pkgs.fetchgit {
 url = "https://framagit.org/batsim/intervalset.git";
 rev = "v${version}";
 hash = "sha256-auMx9J8h3nqNVB4qLcnxVRua4E3jy5bNc2e/REPOek4=";
 };
 });
 intervalset-local = intervalset.overrideAttrs (old: rec {
 version = "local";
 src = "/home/user/projects/intervalset";
 mesonBuildType = "debug";
 });
};

36 / 59

Nix code example – shell

{ pkgs }:

pkgs.mkShell {
 buildInputs = [
 pkgs.sysbench

 pkgs.curl

 pkgs.python3
 pkgs.python3Packages.numpy
];
}

$ sysbench --version
sh: sysbench: command not found
$ python --version
sh: python: command not found

$ nix-shell ...
(nix-shell) $ sysbench --version
sysbench 1.0.20
(nix-shell) $ python --version
Python 3.12.7
(nix-shell) $ python
Python 3.12.7 (main, Oct 1 2024, 02:05:46) [GCC 13.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>> numpy.__version__
'1.26.4'
>>> exit()

37 / 59

Nix code example – container

Big image
packages = rec {
 hello = pkgs.callPackage ./hello.nix {};
 hello-cont = pkgs.dockerTools.buildImage {
 name = "hello";
 tag = "latest";
 created = "now";
 copyToRoot = pkgs.buildEnv {
 name = "image-root";
 paths = [hello];
 pathsToLink = ["/bin"];
 };
 config.Cmd = ["/bin/hello"];
 };
};

2 layers
{ dockerTools, batsim, bash }:
let self = rec {
 layer-dependencies = dockerTools.buildImage {
 name = "oarteam/batsim-deps";
 tag = batsim.version;
 copyToRoot = batsim.runtimeDeps ++ [bash];
 };
 layer-batsim = dockerTools.buildImage {
 fromImage = layer-dependencies;
 fromImageName = layer-dependencies.name;
 fromImageTag = layer-dependencies.tag;
 tag = layer-dependencies.tag;
 name = "oarteam/batsim";
 config = {
 # ...
 };
 };
};
in
 self.layer-batsim

38 / 59

Where to write your Nix expressions?

Evaluating remote (git, some https server…) Nix expressions is as easy as local ones (files)
→ You are free to decide where to write your Nix files

Common locations
• Git repo of your software
• Git repo of your experiment
• Git repo of a set of tools you (or your team/lab/…) manage
• Nixpkgs

39 / 59

Nix → control software env. Limits?

Reproducible builds only if
• Compiler is deterministic
• Build chain (build system…) is deterministic

Quote from the Meson’s doc

Meson aims to support reproducible builds out of the box with zero additional work (assuming
the rest of the build environment is set up for reproducibility). If you ever find a case where
this is not happening, it is a bug. Please file an issue with as much information as possible
and we’ll get it fixed.

Contaminant approach – cannot reuse non-Nix packages
• Nixpkgs has much more packages than any other Linux distro¹
• Writing a Nix package is straightforward most of the time

¹https://repology.org/repositories/statistics
As of 2025-06-23, nixpkgs=106475, AUR=78079, debian12=34451

40 / 59

https://repology.org/repositories/statistics

Grid’5000

Grid’5000 overview

Testbed for computer science research
• large scale
• flexible
• experiment-driven

Key features
• 800 nodes, 15000 cores
• highly reconfigurable & controllable
• advanced monitoring / measurements
• strongly relies on OSS

Lille

Nancy

Lyon

Grenoble

Sophia

10G dedicated circuit
L2VPN

Luxembourg

Strasbourg

Louvain

Toulouse

Bordeaux

Last update: 2025-02-24

Nantes

Rennes

42 / 59

Hardware heterogeneity

Some clusters
• dahu : 32 nodes – 2x Intel Xeon Gold 6130, 192 GiB, 240 GB SSD, Omni-Path
• drac : 12 nodes – 2x IBM POWER8NVL 1.0, …, InfiniBand, 4x Nvidia Tesla P100
• estats : 12 nodes – 1x Nvidia Carmel (aarch64), 1x Nvidia AGX Xavier
• sirius : 1 node – 2x AMD EPYC 7742, 1.92 TB SSD, 8x Nvidia A100
• servan : 2 nodes – 2x AMD EPYC 7352, …, 2x 100 Gbps FPGA
• engelbourg : 8 nodes – 1x Intel Pentium D1517, …, P4 switch

43 / 59

Environment control

Operating system
• Debian (updated regularly) on most clusters
• Specific OS on some clusters – e.g., Nvidia-customized Ubuntu on estats
• What you want with kadeploy

Build your own system image
• With kameleon – imperative approach
• With NixOS (Compose) – functional approach
• How you want as long as you provide kadeploy-compatible files

Network
• VLAN with kavlan
• Real topology is hard to change, but emulation¹ via netem/distem/enoslib

¹https://www.grid5000.fr/w/Network_emulation
44 / 59

https://www.grid5000.fr/w/Network_emulation

How useful is Grid’5000 to your research?

I cannot tell, I don’t know what you work on :/

Most likely useful if you
• Work on distributed systems (lots of different configurable nodes)
• Work on operating systems (clean automatic bare-metal deployments)
• Need computing resources to run programs – e.g., simulation campaigns
• Work on performance/power evaluation, if your hw/network needs are not too specific

45 / 59

Accessing Grid’5000

Getting Access
1. Create your account¹
2. Accept the usage policy²
3. Follow the Getting Started tutorial³
4. Follow other tutorials⁴
5. Communicate with users or admins⁵

Technically
1. ssh on a frontend
2. reserve resources with OAR
3. use resources interactively or not

¹https://www.grid5000.fr/w/Grid5000:Get_an_account
²https://www.grid5000.fr/w/Grid5000:UsagePolicy
³https://www.grid5000.fr/w/Getting_Started
⁴https://www.grid5000.fr/w/Users_Home
⁵https://www.grid5000.fr/w/Support

46 / 59

https://www.grid5000.fr/w/Grid5000:Get_an_account
https://www.grid5000.fr/w/Grid5000:UsagePolicy
https://www.grid5000.fr/w/Getting_Started
https://www.grid5000.fr/w/Users_Home
https://www.grid5000.fr/w/Support

Artifact

Artifact?

From USENIX OSDI’25 Call for Artifacts¹

A scientific paper consists of a constellation of artifacts that extend beyond the document
itself: software, hardware, evaluation data and documentation, raw survey results, mecha-
nized proofs, models, test suites, benchmarks, and so on. In some cases, the quality of
these artifacts is as important as that of the document itself.

Forgotten before, encouraged now, forced soon?
• SC since 2016: description mandatory, evaluation optional
• ACM REP since 2023: AD+AE mandatory for full papers with experimental results
• USENIX OSDI’24: 69% of accepted papers participated in the artifact evaluation process

¹https://www.usenix.org/conference/osdi25/call-for-artifacts
48 / 59

https://www.usenix.org/conference/osdi25/call-for-artifacts

How to do an artifact?

Use cases
• Reviewer/Reader wants to check result analysis, using existing data
• Reviewer/Reader wants to check a result, running a subpart of the experiment
• Researcher wants to reuse parts of the experiment setup

49 / 59

How to do an artifact?

Use cases
• Reviewer/Reader wants to check result analysis, using existing data
• Reviewer/Reader wants to check a result, running a subpart of the experiment
• Researcher wants to reuse parts of the experiment setup

How to document your experiment?
• Big README with shell blocks?
• Bunch of scripts?
• Automate everything with some workflow system?

49 / 59

How to do an artifact?

Use cases
• Reviewer/Reader wants to check result analysis, using existing data
• Reviewer/Reader wants to check a result, running a subpart of the experiment
• Researcher wants to reuse parts of the experiment setup

How to document your experiment?
• Big README with shell blocks?
• Bunch of scripts?
• Automate everything with some workflow system?

The best way to it depends on your experiment, but
• Enable reusing parts of the experiments (sofware engineering)

‣ Can be tricky – e.g., custom OS deployment without being Grid’5000 specific
• Provide a high-level documentation
• Enable exploration: Keep things as stupid as possible
• Enable variation: Show how to tune important parameters, software environment…

49 / 59

Artifact example : toy “experiments” for this talk

https://gitlab.irit.fr/sepia-pub/open-science/non-rep-src-irit-phd-days

50 / 59

https://gitlab.irit.fr/sepia-pub/open-science/non-rep-src-irit-phd-days

Artifact example : one we did for Euro-Par’24

Code of experimental setup in Git repo, duplicated for longevity
• Public repo at irit
• Public repo at framagit
• Long-term archive on Software Heritage

Various needed software in their own repos
• All their source codes & Nix descriptions archived on Software Heritage

Measurements & analysis notebooks (more details than what fit in paper)
• On Zenodo

51 / 59

https://gitlab.irit.fr/sepia-pub/open-science/artifact-europar24-lightweight-power-pred-sched
https://framagit.org/batsim/artifact-europar24-lightweight-power-pred-sched
https://archive.softwareheritage.org/swh:1:rev:5a15139dadde8d923703ece93745fa250b1a0c53;origin=https://framagit.org/batsim/artifact-europar24-lightweight-power-pred-sched.git;visit=swh:1:snp:968650e57128ea88b02a858279a7054f62f0a0b0
https://zenodo.org/records/11208389

Methods

REP hygiene VS patching holes and cracks

Current REP crisis is mostly a methodological crisis

REP is too often an afterthought of your experiment
• How to trace your scientific decisions?
• How to enable people joining the work along the way easily?

IMO sane REP practice should be used early on in your experiment
• Very similar to software engineering good practices

53 / 59

A fool with a tool…

is still a fool!
Tools such as Nix and Grid’5000 help, but method is the key to achieve REP

IMO Computer science is immature and lacks standardized protocols but
• You need to learn about most common bad research practices¹

‣ Data dredging (𝑝-hacking): Perform many statistical tests on the data and only report those
that come back with significant results

‣ HARKing: Hypothesizing after the results are known
‣ Publication bias towards positive results
‣ …

• You need to plan your experiments
‣ Exploration ≠ Testing your hypotheses
‣ Consider €/environmental costs

¹https://www.polytechnique-insights.com/en/braincamps/society/what-does-it-mean-to-trust-
science/science-can-suffer-from-lack-of-reproducibility-of-results/

54 / 59

https://www.polytechnique-insights.com/en/braincamps/society/what-does-it-mean-to-trust-science/science-can-suffer-from-lack-of-reproducibility-of-results/
https://www.polytechnique-insights.com/en/braincamps/society/what-does-it-mean-to-trust-science/science-can-suffer-from-lack-of-reproducibility-of-results/

Ten Simple Rules for Reproducible Computational Research — comp. biology

From Sandve GK, Nekrutenko A, Taylor J, Hovig E (2013)¹
1. For Every Result, Keep Track of How It Was Produced
2. Avoid Manual Data Manipulation Steps
3. Archive the Exact Versions of All External Programs Used
4. Version Control All Custom Scripts
5. Record All Intermediate Results, When Possible in Standardized Formats
6. For Analyses That Include Randomness, Note Underlying Random Seeds
7. Always Store Raw Data behind Plots
8. Generate Hierarchical Analysis Output,

Allowing Layers of Increasing Detail to Be Inspected
9. Connect Textual Statements to Underlying Results

10. Provide Public Access to Scripts, Runs, and Results

¹https://doi.org/10.1371/journal.pcbi.1003285
55 / 59

https://doi.org/10.1371/journal.pcbi.1003285

Best Practices for Scientific Computing — bioinformatics

From Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. (2014)¹
1. Write programs for people, not computers.
2. Let the computer do the work.
3. Make incremental changes.
4. Don’t repeat yourself (or others).
5. Plan for mistakes.
6. Optimize software only after it works correctly.
7. Document design and purpose, not mechanics.
8. Collaborate.

¹https://doi.org/10.1371/journal.pbio.1001745
56 / 59

https://doi.org/10.1371/journal.pbio.1001745

The Practice of Reproducible Research: Case Studies and Lessons from the Data-Intensive Sciences

Quotes from chapter Lessons Learned, wrote by Kathryn Huff¹

• The case studies made clear […] that humans must be incentivized to spend time on tasks
intended solely for reproducibility

• a lack of access to restricted data or hardware can hobble the reproducibility efforts of even the
most determined scientists

• portability of one’s workflow is still a challenge for those intent on openness, since packaging
— especially installation of dependencies — remains a critical stumbling block to sharing and
extending work

¹https://www.ucpress.edu/books/the-practice-of-reproducible-research/paper
57 / 59

https://www.ucpress.edu/books/the-practice-of-reproducible-research/paper

Conclusion

Conclusion — REP and tools for REP in computer science

Take home message
• Plan your experiments
• Consider REP in your experiment design
• Consider writing artifacts — and evaluating them? :)
• Some tools (Nix, Grid’5000...) can help

To go further
• Scientific Methodology and Performance Evaluation for Computer Scientists
https://github.com/alegrand/SMPE/

• REP MOOCs on https://www.fun-mooc.fr/fr/cours/?query=repro
‣ Recherche reproductible : principes méthodologiques pour une science transparente
‣ Reproducible Research II: Practices and tools for managing computations and data

• https://nix-tutorial.gitlabpages.inria.fr/nix-tutorial
• https://www.grid5000.fr

59 / 59

https://github.com/alegrand/SMPE/
https://www.fun-mooc.fr/fr/cours/?query=repro
https://nix-tutorial.gitlabpages.inria.fr/nix-tutorial
https://www.grid5000.fr

	Who am I?
	Introduction
	Stories
	This talk in a nutshell
	Outline

	REP & what can go wrong
	REP definitions
	My opinion of these definitions
	What can go wrong? vague software (algo ≠ implem)
	What can go wrong? vague software (algo ≠ implem)
	What can go wrong? vague software (algo ≠ implem) — performance
	What can go wrong? compilation options
	What can go wrong? compilation environment (option=-O2)
	What can go wrong? "homogeneous" machines – dahu cluster, vec, gcc14, -O2
	What can go wrong? "homogeneous" machines
	What can go wrong? different machines
	What can go wrong? filesystem
	What can go wrong? version of your software
	What can go wrong? version of some software (dep)
	What can go wrong? CPU freq changed
	What can go wrong? kernel
	What can go wrong? external resource has changed/disappeared 🙀
	What can go wrong? Summary
	What can go wrong? many more things!
	Expe & control
	What should be controlled? How?

	Nix
	Nix's main idea
	What is Nix?
	How to store packages?
	How to store packages?
	How does Nix achieve purity?
	How does Nix achieve purity? derivation tree
	Nix λ example – explicit hello world package
	Nix λ example – real package, using a build system
	Package customization – tune λ args via override
	Package customization – tune λ definition via overrideAttrs
	Nix code example – shell
	Nix code example – container
	Where to write your Nix expressions?
	Nix → control software env. Limits?

	Grid'5000
	Grid'5000 overview
	Hardware heterogeneity
	Environment control
	How useful is Grid'5000 to your research?
	Accessing Grid'5000

	Artifact
	Artifact?
	How to do an artifact?
	Artifact example : toy "experiments" for this talk
	Artifact example : one we did for Euro-Par'24

	Methods
	REP hygiene VS patching holes and cracks
	A fool with a tool…
	Ten Simple Rules for Reproducible Computational Research — comp. biology
	Best Practices for Scientific Computing — bioinformatics
	The Practice of Reproducible Research: Case Studies and Lessons from the Data-Intensive Sciences

	Conclusion
	Conclusion — REP and tools for REP in computer science

