Energy vs Responsiveness Tradeoffs in EASY Backfilling

Millian Poquet

DATAMOVE team LIG laboratory Univ. Grenoble Alpes, Inria millian.poquet@inria.fr

2017-06-27

HPC Platforms

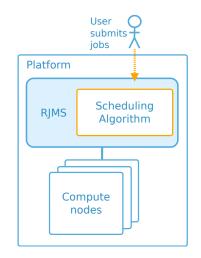
- Exascale around 2023
- Energy: locking point

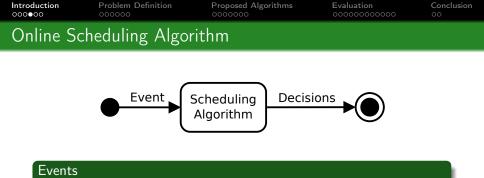
Smaller-Scale Platforms

- ↑ in *small* companies
- Energy: \$\$

Introduction 0●0000	Problem Definition	Proposed Algorithms	Evaluation 000000000000	Conclusion
How To R	educe Energy	Consumption?		

- Energy-efficient machines/cooling system
- DVFS
- Shutting machines down
- ...

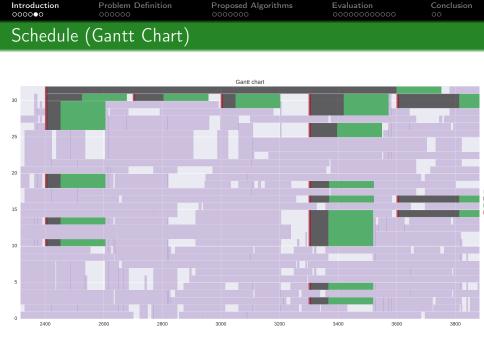

Why focus on the shutdown?


- Can be used on most platforms
- Significant potential gains
- Compatible with DVFS

Introduction 00●000	Problem Definition	Proposed Algorithms	Evaluation 000000000000	Conclusion 00
Platform N	Management			

Resources and Jobs Management Systems (RJMS)

- AKA batch scheduler
- Orchestrates resources
 - Implements scheduling policies
 - Manages parallel jobs
 - Enforces energy policy
- Examples: SLURM, OAR, TORQUE, PBS...



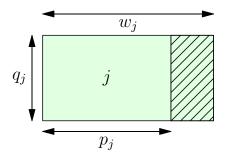
- Job submission/termination
- Resource state alteration (switched ON/OFF, DVFS...)
- (Periodically)

Decisions

- Execute jobs (where?)
- Change resource state (ON, OFF, DVFS...)

Introduction 00000●	Problem Definition	Proposed Algorithms	Evaluation 000000000000	Conclusion
Outline				

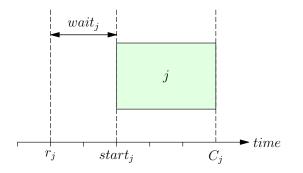
- O Proposed Algorithms
- ④ Evaluation


Introduction 000000	Problem Definition ●00000	Proposed Algorithms	Evaluation 000000000000	Conclusion 00
Workload	Definition			

 $W = \{j_1, j_2, j_3, ...\}$. Unknown |W|

Job j definition:

- Submission time r_j (release date). Unknown in advance
- Processing time p_j. Unknown in advance
- Requested time $w_j \ge p_j$. Known at submission time
- Number of requested resources q_i . Known at submission time


o ...

Once the job has been computed:

- Starting time *start*_j
- Completion time C_j
- Waiting time *wait_j* = *start_j r_j*

Introduction	Problem Definition	Proposed Algorithms	Evaluation	Conclusion
000000	00●000		000000000000	00
Platform	Definition			

Platform: ordered set M of identical machines

- $t_{on \rightarrow off}$, switching OFF time (s)
- $t_{off \rightarrow on}$, switching ON time (s)
- $p_m(t)$, electrical consumption at time t (W)

$$p_M(t) = \sum_m \int_{min(s_j)}^{max(C_j)} p_m(t) dt$$

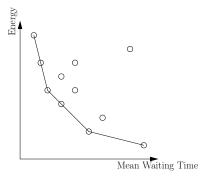
State	Power (W)
computing	<i>p_{comp}</i>
idle	Pidle
off	<i>p</i> off
$on \rightarrow off$	$p_{on \rightarrow off}$
$off \rightarrow on$	$p_{off \rightarrow on}$

Hypotheses:

- $p_{off} \ll p_{idle} < p_{comp}$
- $p_{off} < p_{* \rightarrow *} \leq p_{comp}$

Introduction 000000	Problem Definition 000●00	Proposed Algorithms	Evaluation 000000000000	Conclusion
Problem [Definition			

Input:


- Workload W of |W| jobs
- Platform M of |M| machines

Compute W on M, minimizing:

- Total Consumed Energy
- Mean Waiting Time (QoS)

$$E = \sum_{m} \int_{min(s_j)}^{max(C_j)} p_m(t) dt$$

$$MWT = \frac{1}{|W|} \sum_{j} wait_{j}$$

Introduction 000000	Problem Definition 0000●0	Proposed Algorithms	Evaluation 000000000000	Conclusion
Desired Pr	operties			

Results:

- High energy savings
- Low performance loss
- Robustness, predictability...

Constraints:

- Scalability
- No further job knowledge required
- Low #switch
- Ease of implementation

Introduction	Problem Definition	Proposed Algorithms	Evaluation	Conclusion
000000	00000●		000000000000	00
Some Rela	ated Work			

Theoretical:

- DVFS/shutdown models&algo [Albers, 2010]
- Markov Chains [Herlich and Karl, 2012]

Practical:

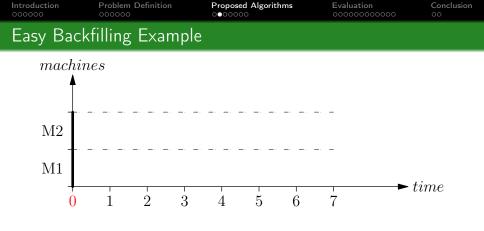
- DVFS/shutdown in SLURM [Georgiou et al., 2015]
- Energy budget in EASY [Dutot et al., 2016a]
- Applications [Etinski et al., 2012]

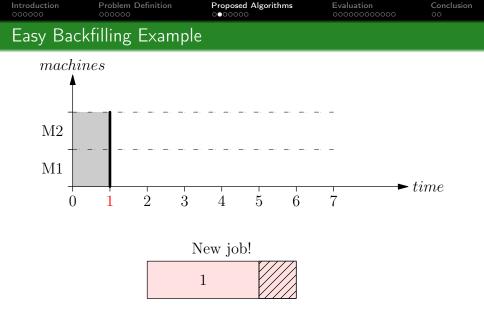
Overprovisioning:

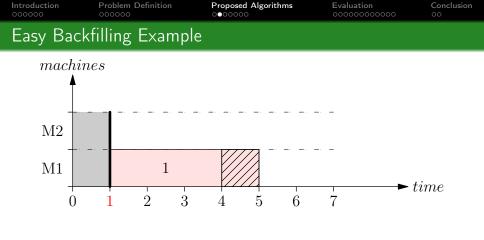
• Max throughput, power budget [Sarood et al., 2014]

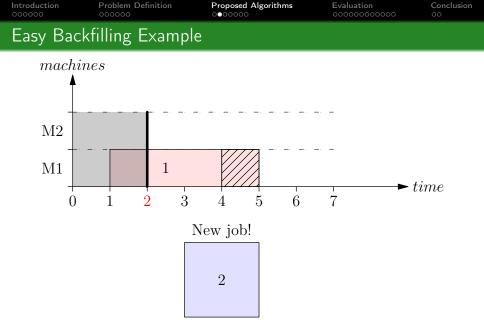
Introduction 000000	Problem Definition	Proposed Algorithms ●○○○○○○	Evaluation 000000000000	Conclusion
Algorithm	s Overview			

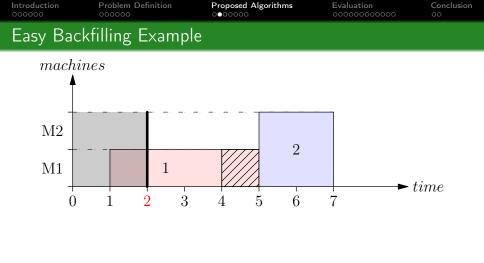
- Based on EASY backfilling
- Called on *classical* events and every T seconds
- Study interactions of two main mechanisms

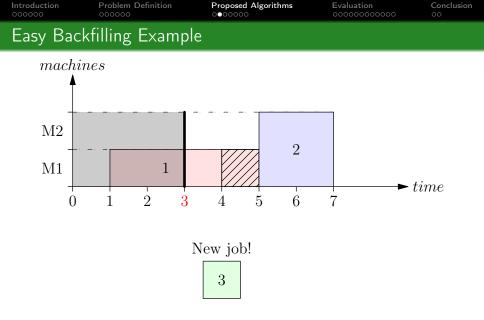

Opportunistic Shutdown

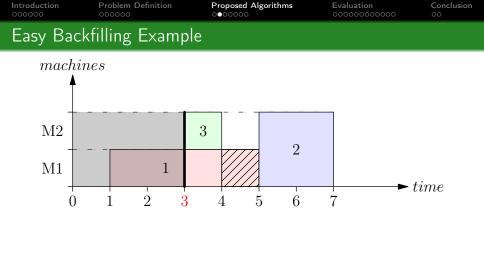

• Machine idle for $t \ge t_{idle}$ seconds \rightarrow switched off

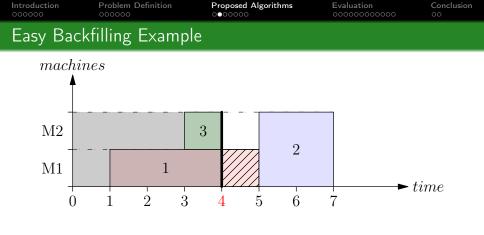

Adjusting the number of usable machines

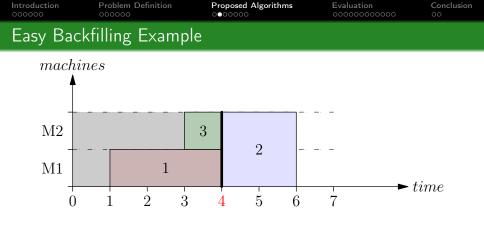

- Statically, avoid using more than $f \cdot |M|$ machines
- Dynamically, depending on system unresponsiveness

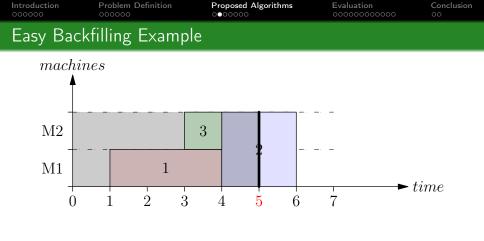

If the priority job **do requires** more machines, they will be switched-on.

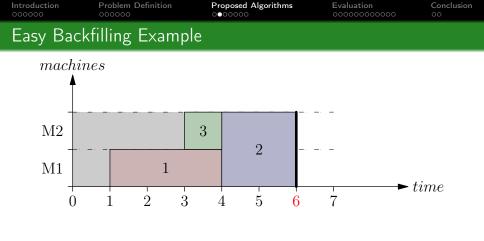




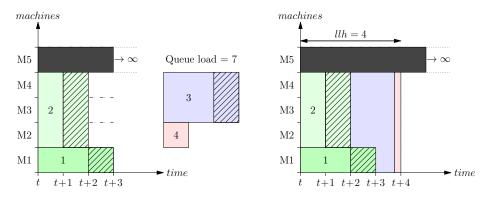


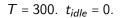


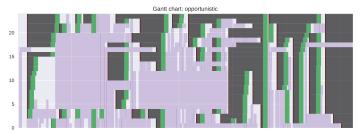




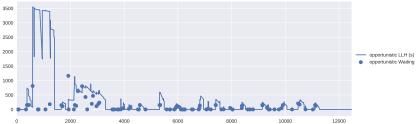
Jobs 1 and 3 finished



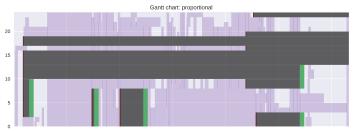



Required time to dump current load in the provisional schedule.

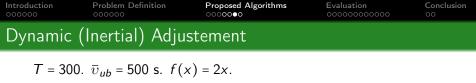
$$\mathsf{Load} = \sum_{j} q_j \times w_j$$



Introduction 000000	Problem Definition	Proposed Algorithms	Evaluation 00000000000	Conclusion
Opportuni	stic Shutdown			

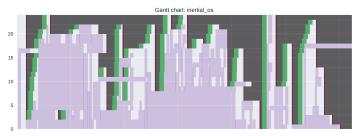


Unresponsiveness estimation

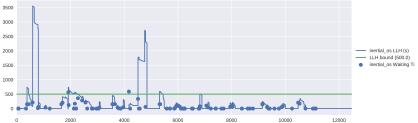

000000 0	000000	0000000	00000000000	00
Static Adjus	stement			

T = 300. 8 usable machines instead of 24.

Resources state: proportional



20 15 10 Gantt chart: inertial

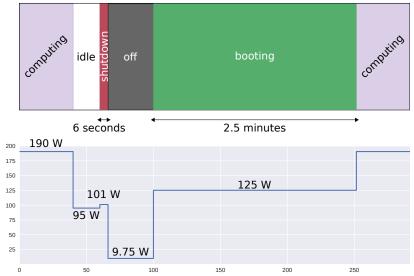


Introduction 000000	Problem Definition	Proposed Algorithms ○○○○○●	Evaluation 000000000000	Conclusion
Inertial +	- Opportunistic			

$T = 300. \ \overline{v}_{ub} = 500 \text{ s. } f(x) = 2x. \ t_{idle} = 0.$

Unresponsiveness estimation

Introduction 000000	OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	OCOCOCOC	gorithms	Evaluation ●0000000	0000	00	ion
Experime	ental Setup						
Simula	tion:			Make de	ecisions	External process	
· ·	atsim (SimGrid) atsched (C++)		Jobs and Resources Managemen Layer	nt	Batsim Network Protocol		


Workloads:

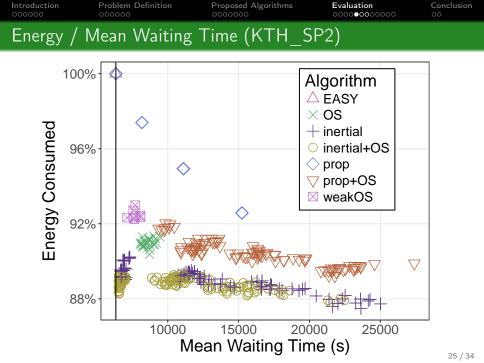
- KTH SP2, SDSC SP2
- Kept valid jobs $(w_j > r_j)$
- 11, 24 months → assess robustness
- Periodic utilization → room to save energy

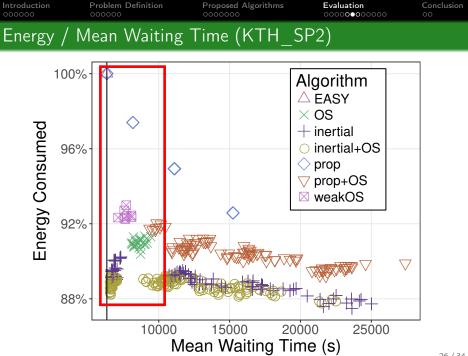
Homogeneous. $|M| \in \{100, 128\}$. G5K Taurus [Dutot et al., 2016a].

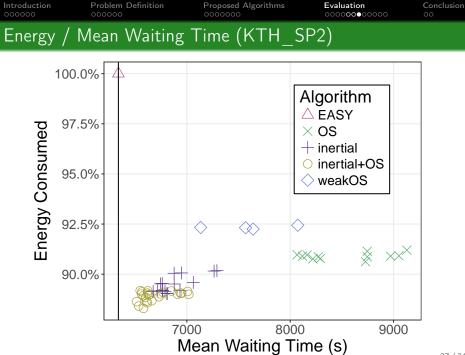
Introduction 000000	Problem Definition	Proposed Algorithms	Evaluation 00000000000	Conclusion

Experimental Setup (exploration space)

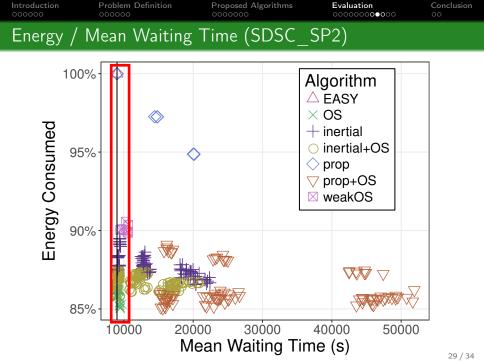
Shared by all algorithms					
Workloads	KTH_SP2, SDSC_SP2				
Platform	homogeneous240				
Shared by Proportional and Inertial					
T (s)	60, 120, 300, 600				
t _{idle} (s) 0, 30, 60, 600, 6000, +					
Make run decisions on period	true, false				
Proportional-specific					
ρ	1.00, 0.95, 0.90, 0.85				
Inertial-specific					
f(n)	$n+1, n \times 2$				
\overline{v}_{ub} (s)	$1 \cdot 10^4, \ 1 \cdot 10^5, \ 2 \cdot 10^5$				
Allow future switches	true, false				

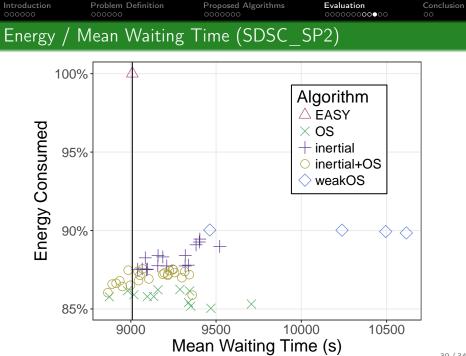

All these parameters combinations have been tested

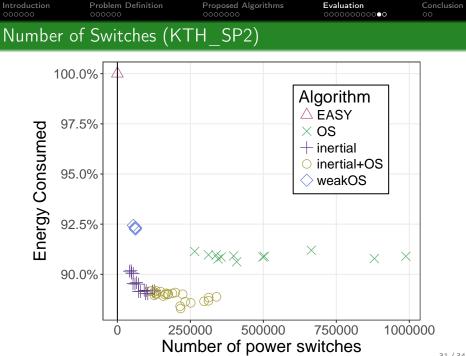

Introduction 000000	Problem Definition	Proposed Algorithms	Evaluation 0000000000	Conclusion 00
Algorithm	Nomenclature			

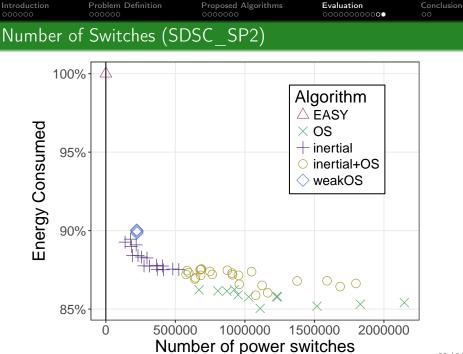

Opportunistic shutdown aggressiveness:

- strong: $t_{idle} \in \{ 0, 30, 60, 600 \}$
- weak: $t_{idle} \in \{ 6000, +\infty \}$


Name	Opp.?	Proportional?	Inertial?
EASY			
weakOS	weak		
prop	weak	\checkmark	
inertial	weak		\checkmark
OS	strong		
prop+OS	strong	\checkmark	
inertial+OS	strong		\checkmark







Introduction 000000	Problem Definition	Proposed Algorithms	Evaluation 000000000000	Conclusion ●○
Conclusio	n			

Inertial shutdown:

- Energy/Performance tradeoffs
- Same order of energy savings as OS
- Low mean performance loss
- No max performance loss (not the case of OS)
- Low #switch
- Stable, predictable

Future work:

- Communication
- EASY constraints?

Introduction 000000	Problem Definition	Proposed Algorithms	Evaluation 000000000000	Conclusion ○●
Thanks!				

Batsim: https://github.com/oar-team/batsim Experiment: https://gitlab.inria.fr/batsim/article-cluster17

Contact

millian.poquet@inria.fr

Algorithm information	Data information	Results	Bibliography
●00	0	0000000000000	000000000
Inertial Shutdown			

Parameters:

- $f: \mathbb{N} \to \mathbb{N}$, the inertia function
- $\bar{\upsilon}_{\textit{ub}},$ the unresponsiveness mean threshold

Idea:

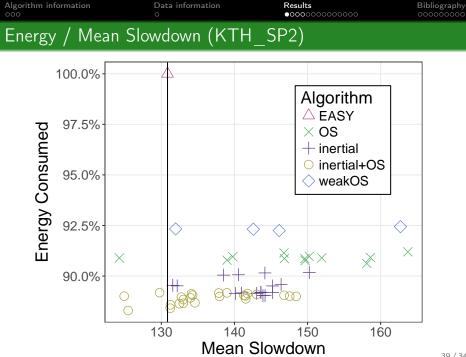
- Based on Easy Backfilling
- Estimates the system unresponsiveness at each event
- Do switches periodically, computing MU: the mean unresponsiveness since last periodic call
 - $+MU \rightarrow$ switch some machines ON
 - $\bullet~$ -MU \rightarrow switch some machines OFF

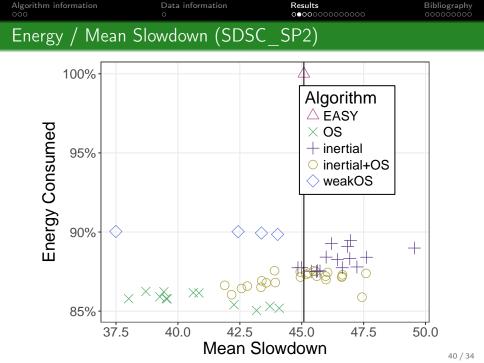
state ∈ {sedating, awakening} is stored
Initially, state = awakening

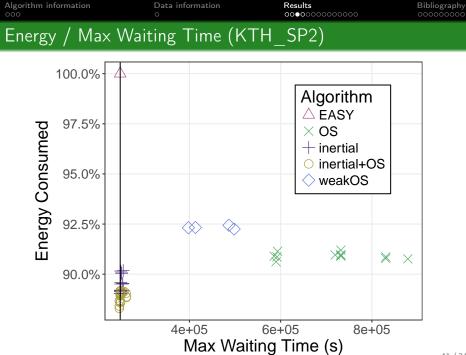
At each periodic call *i*:

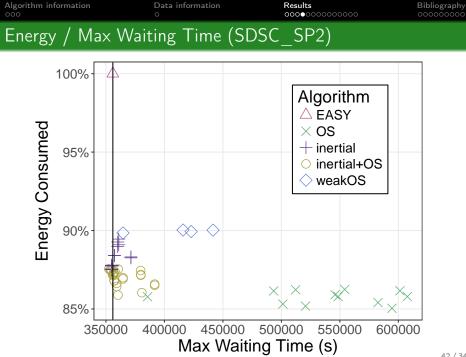
- (v
 _i ≥ v
 _{ub}) ⇒ state set to awakening. Decision made immediately.
- Otherwise,
 - (state = awakening) ∧ (ṽ_i ≤ ṽ_{i-1}) ⇒
 state set to sedating. No decision made now.
 - $(state = sedating) \land (\tilde{v}_i > \tilde{v}_{i-1}) \implies$ state set to *awakening*. No decision made now.
 - Otherwise, decision made immediately.

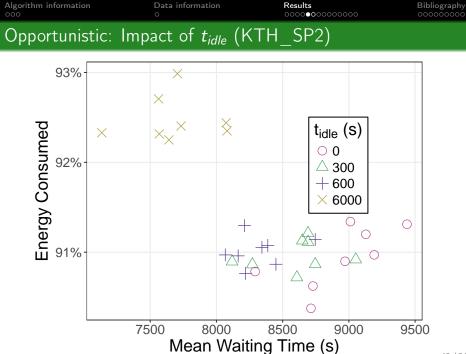
Decision: Switch *nb* machines (ON/OFF depending on *state*)

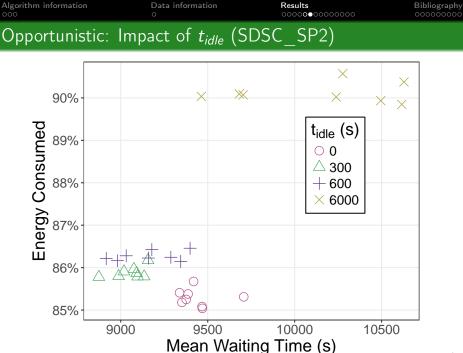

 S_a , switchable machines at *i* S_e , switched machines since *i* - 1 (for inertia reasons)

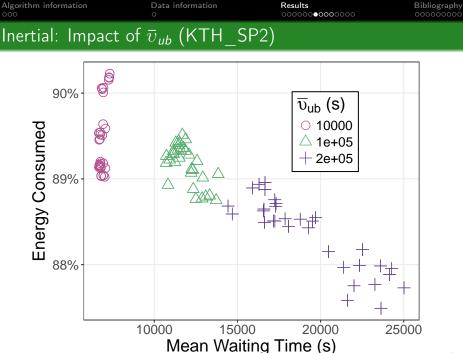

Switch at least 1 machine, without doing the impossible:

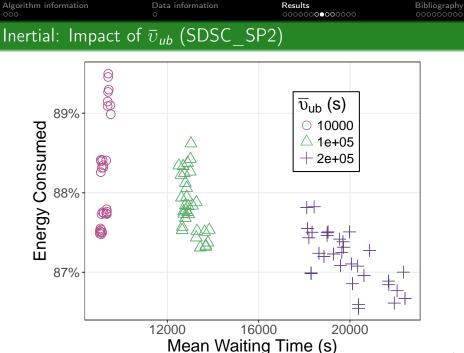

$$nb = min\left(max\left(f(|S_e|), 1\right), |S_a|\right)$$

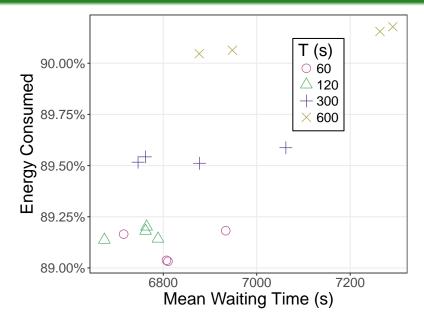

Algorithm information	Data information	Results	Bibliography
	●	0000000000000	000000000
Energy information]		

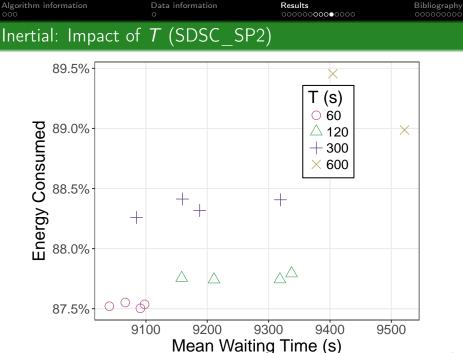

Variable	Simulator	Scheduler	
$t_{on \rightarrow off}$	151.52	152 + 5	
$t_{off \rightarrow on}$	6.1	6.1 + 5	
<i>p</i> off	9.75	9.75	
Pidle	95	95	
<i>p_{comp}</i>	190.738	190.738	
P _{on→off}	100.997	101.640	
Poff→on	125.174	125.197	

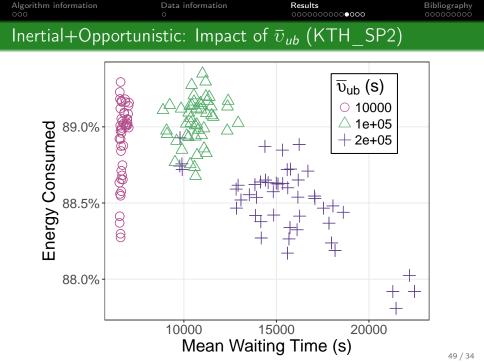


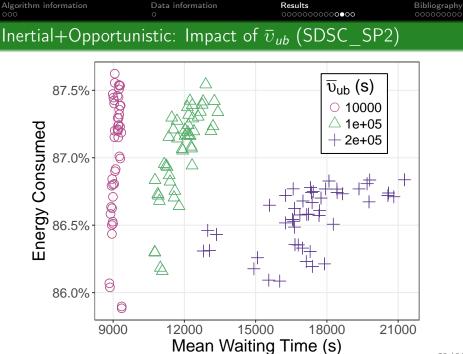


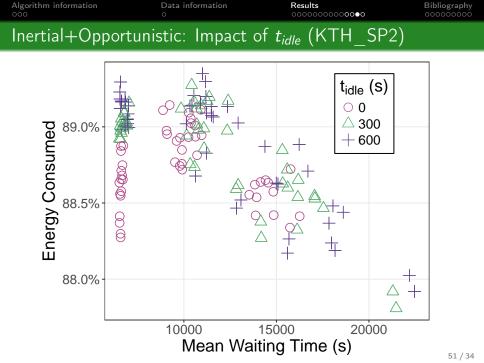


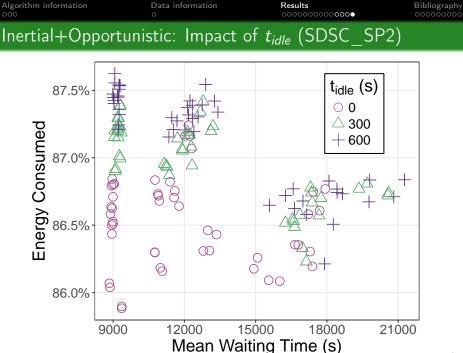

Algorithm information


Data information


Results


Bibliography 000000000


Inertial: Impact of T (KTH_SP2)



Algorithm information	Data information	Results	Bibliography
	0	0000000000000	••••••
References I			

Albers, S. (2010).

Energy-efficient algorithms. *Communications of the ACM*, 53(5):86–96.

Casanova, H., Giersch, A., Legrand, A., Quinson, M., and Suter, F. (2014).

Versatile, scalable, and accurate simulation of distributed applications and platforms.

Journal of Parallel and Distributed Computing, 74(10):2899–2917.

Algorithm information	Data information	Results	Bibliography
	0	0000000000000	●●●●●●●●●
References II			

Cho, S. and Melhem, R. G. (2010).

On the interplay of parallelization, program performance, and energy consumption.

IEEE Transactions on Parallel and Distributed Systems, 21(3):342–353.

 Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.-C., Barkai, D., Berthou, J.-Y., Boku, T., Braunschweig, B., et al. (2011).
 The international exascale software project roadmap. *International Journal of High Performance Computing Applications*, 25(1):3–60.

Algorithm information	Data information	Results	Bibliography
	0	0000000000000	©©©©©©©©
References III			

 Dutot, P.-F., Georgiou, Y., Glesser, D., Lefevre, L., Poquet, M., and Rais, I. (2016a).
 Towards energy budget control in hpc.
 In *Cluster, Cloud and Grid Computing (CCGrid), 2016 16th IEEE/ACM International Symposium on.* IEEE.

Dutot, P.-F., Mercier, M., Poquet, M., and Richard, O. (2016b).

Batsim: a realistic language-independent resources and jobs management systems simulator.

In 20th Workshop on Job Scheduling Strategies for Parallel Processing.

Dutot, P.-F., Poquet, M., and Trystram, D. (2017). Gitlab repository of the present article.

Algorithm information	Data information	Results	Bibliography
	0	0000000000000	©©©©©©©©
References IV			

- Dutot, P.-F., Rzadca, K., Saule, E., Trystram, D., et al. (2009).
 Multi-objective scheduling. Introduction to scheduling, pages 219–251.
- Etinski, M., Corbalán, J., Labarta, J., and Valero, M. (2012). Understanding the future of energy-performance trade-off via dvfs in hpc environments.

Journal of Parallel and Distributed Computing, 72(4):579–590.

Feitelson, D. (2017). Parallel workload archive.

Algorithm information	Data information	Results	Bibliography
	0	0000000000000	•••••
References V			

Feitelson, D. G. (2001).

Metrics for parallel job scheduling and their convergence. In Workshop on Job Scheduling Strategies for Parallel Processing, pages 188–205. Springer.

Feitelson, D. G. (2015). Workload modeling for computer systems performance evaluation.

Cambridge University Press.

Feitelson, D. G. (2016).

Resampling with feedback—a new paradigm of using workload data for performance evaluation.

In *European Conference on Parallel Processing*, pages 3–21. Springer.

Algorithm information	Data information	Results	Bibliography
	0	0000000000000	••••••
References VI			

- Feitelson, D. G., Tsafrir, D., and Krakov, D. (2014). Experience with using the parallel workloads archive. *Journal of Parallel and Distributed Computing*, 74(10):2967–2982.
- Georgiou, Y., Glesser, D., and Trystram, D. (2015). Adaptive Resource and Job Management for Limited Power Consumption.

In International Parallel and Distributed Processing Symposium Workshop (IPDPS) Workshop.

Algorithm information	Data information	Results	Bibliography
	0	00000000000000	•••••••
References VII			

Herlich, M. and Karl, H. (2012).

Average and competitive analysis of latency and power consumption of a queuing system with a sleep mode. In Proceedings of the 3rd International Conference on Future Energy Systems: Where Energy, Computing and Communication Meet, e-Energy '12, pages 14:1-14:10, New York, NY, USA. ACM.

- Mu'alem, A. W. and Feitelson, D. G. (2001). Utilization, predictability, workloads, and user runtime estimates in scheduling the ibm sp2 with backfilling. TPDS.
- 🧃 oar team (2017a).

Batsched gitlab repository.

Algorithm information	Data information	Results	Bibliography
	0	0000000000000	••••••
References VIII			

oar team (2017b). Batsim gitlab repository.

Patki, T., Lowenthal, D. K., Rountree, B. L., Schulz, M., and de Supinski, B. R. (2016).
 Economic viability of hardware overprovisioning in power-constrained high performance computing.
 In Proceedings of the 4th International Workshop on Energy Efficient Supercomputing, pages 8–15. IEEE Press.

Ruiz, C., Harrache, S., Mercier, M., and Richard, O. (2015).
 Reconstructable Software Appliances with Kameleon.
 SIGOPS Oper. Syst. Rev., 49(1):80–89.

Algorithm information	Data information	Results	Bibliography
	0	0000000000000	••••••
References IX			

Sarood, O., Langer, A., Gupta, A., and Kale, L. (2014). Maximizing throughput of overprovisioned hpc data centers under a strict power budget.

In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 807–818. IEEE Press.

Snowdon, D. C., Ruocco, S., and Heiser, G. (2005). Power management and dynamic voltage scaling: Myths and facts.

In Proceedings of the 2005 workshop on power aware real-time computing, volume 12.