
Energy vs Responsiveness Tradeoffs in EASY
Backfilling

Millian Poquet

DATAMOVE team
LIG laboratory

Univ. Grenoble Alpes, Inria
millian.poquet@inria.fr

2017–06–27



Introduction Problem Definition Proposed Algorithms Evaluation Conclusion

Context: Computing Platforms

HPC Platforms
Exascale around 2023
Energy: locking point

Smaller-Scale Platforms
↑ in small companies
Energy: $$
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How To Reduce Energy Consumption?

Energy-efficient machines/cooling system
DVFS
Shutting machines down
...

Why focus on the shutdown?
Can be used on most platforms
Significant potential gains
Compatible with DVFS
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Platform Management

Resources and Jobs Management
Systems (RJMS)

AKA batch scheduler
Orchestrates resources

Implements scheduling
policies
Manages parallel jobs
Enforces energy policy

Examples: SLURM, OAR,
TORQUE, PBS. . .

RJMS
Scheduling
Algorithm

Platform

Compute
nodes

User
submits
jobs
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Online Scheduling Algorithm

Scheduling
Algorithm

Event Decisions

Events
Job submission/termination
Resource state alteration (switched ON/OFF, DVFS...)
(Periodically)

Decisions
Execute jobs (where?)
Change resource state (ON, OFF, DVFS...)
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Schedule (Gantt Chart)
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Outline

2 Problem Definition

3 Proposed Algorithms

4 Evaluation

5 Conclusion
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Workload Definition

W = {j1, j2, j3, . . .}. Unknown ∣W ∣

Job j definition:
Submission time rj (release date). Unknown in advance
Processing time pj . Unknown in advance
Requested time wj ≥ pj . Known at submission time
Number of requested resources qj . Known at submission time
...

j

pj

wj

qj

8 / 34



Introduction Problem Definition Proposed Algorithms Evaluation Conclusion

More Job-Related Notations

Once the job has been computed:
Starting time startj

Completion time Cj

Waiting time waitj = startj − rj

time

j

rj startj Cj

waitj
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Platform Definition

Platform: ordered set M of identical machines

ton→off , switching OFF time (s)
toff→on, switching ON time (s)
pm(t), electrical consumption at time t (W)

pM(t) =∑
m
∫

max(Cj)

min(sj)

pm(t) dt

State Power (W)
computing pcomp

idle pidle

off poff

on → off pon→off

off → on poff→on

Hypotheses:
poff ≪ pidle < pcomp

poff < p∗→∗ ≤ pcomp
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Problem Definition

Input:
Workload W of ∣W ∣ jobs
Platform M of ∣M ∣ machines

Compute W on M,
minimizing:

Total Consumed Energy
Mean Waiting Time
(QoS)

E =∑
m
∫

max(Cj)

min(sj)

pm(t) dt

MWT = 1
∣W ∣∑j

waitj

Mean Waiting Time

E
n
er
gy
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Desired Properties

Results:
High energy savings
Low performance loss
Robustness, predictability...

Constraints:
Scalability
No further job knowledge required
Low #switch
Ease of implementation
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Some Related Work

Theoretical:
DVFS/shutdown models&algo [Albers, 2010]
Markov Chains [Herlich and Karl, 2012]

Practical:
DVFS/shutdown in SLURM [Georgiou et al., 2015]
Energy budget in EASY [Dutot et al., 2016a]
Applications [Etinski et al., 2012]

Overprovisioning:
Max throughput, power budget [Sarood et al., 2014]
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Algorithms Overview

Based on EASY backfilling
Called on classical events and every T seconds
Study interactions of two main mechanisms

Opportunistic Shutdown
Machine idle for t ≥ tidle seconds → switched off

Adjusting the number of usable machines

Statically, avoid using more than f ⋅ ∣M ∣ machines
Dynamically, depending on system unresponsiveness

If the priority job do requires more machines, they will be
switched-on.
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Easy Backfilling Example

time
0 1 2 3 4 5 6 7

machines

M1

M2
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Easy Backfilling Example

time
0 1 2 3 4 5 6 7

machines

M1

M2

1

New job!
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Easy Backfilling Example
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Easy Backfilling Example

time
0 1 2 3 4 5 6 7

machines

M1

M2

1
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3

Jobs 1 and 3 finished
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How to Estimate Unresponsiveness? Liquid Load Horizon

Required time to dump current load in the provisional schedule.

Load =∑
j

qj ×wj

time

machines

M1

M2

M3

M4

M5

t t+1 t+2 t+3

1

2

→ ∞ Queue load = 7

3

4

time

machines

M1

M2

M3

M4

M5

t t+1 t+2 t+3 t+4

1

2

→ ∞

llh = 4
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Opportunistic Shutdown

T = 300. tidle = 0.

0
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Gantt chart: opportunistic
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Static Adjustement

T = 300. 8 usable machines instead of 24.
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Dynamic (Inertial) Adjustement

T = 300. υub = 500 s. f (x) = 2x .
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Inertial + Opportunistic

T = 300. υub = 500 s. f (x) = 2x . tidle = 0.
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Gantt chart: inertial_os
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Experimental Setup

Simulation:
Batsim (SimGrid)
Batsched (C++)

Workloads:
KTH SP2, SDSC SP2
Kept valid jobs (wj > rj)
11, 24 months → assess
robustness
Periodic utilization →
room to save energy

Hardware
Layer

Submit jobs

Network
Layer

Execute jobs
Kill jobs
Set DVFS state
Switch ON/OFF

Make decisions

B
a
tsim

p
ro

ce
ss

E
x
te

rn
a
l

p
ro

ce
ss

Batsim
Network
Protocol

Jobs and
Resources
Management
Layer

SimGrid

...

21 / 34



Introduction Problem Definition Proposed Algorithms Evaluation Conclusion

Experimental Setup (platform)
Homogeneous. ∣M ∣ ∈ {100,128}. G5K Taurus [Dutot et al., 2016a].
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Experimental Setup (exploration space)

Shared by all algorithms
Workloads KTH_SP2, SDSC_SP2
Platform homogeneous240

Shared by Proportional and Inertial
T (s) 60, 120, 300, 600
tidle (s) 0, 30, 60, 600, 6000, +∞
Make run decisions on period true, false

Proportional-specific
ρ 1.00, 0.95, 0.90, 0.85

Inertial-specific
f (n) n + 1, n × 2
υub (s) 1 ⋅ 104, 1 ⋅ 105, 2 ⋅ 105

Allow future switches true, false

All these parameters combinations have been tested
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Algorithm Nomenclature

Opportunistic shutdown aggressiveness:
strong: tidle ∈ { 0, 30, 60, 600 }
weak: tidle ∈ { 6000, +∞ }

Name Opp.? Proportional? Inertial?
EASY
weakOS weak
prop weak ✓
inertial weak ✓
OS strong
prop+OS strong ✓
inertial+OS strong ✓

24 / 34
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Energy / Mean Waiting Time (KTH_SP2)
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Energy / Mean Waiting Time (KTH_SP2)
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Energy / Mean Waiting Time (SDSC_SP2)
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Energy / Mean Waiting Time (SDSC_SP2)
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Energy / Mean Waiting Time (SDSC_SP2)
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Number of Switches (KTH_SP2)
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Number of Switches (SDSC_SP2)

● ●●

●● ●
●●●

●
●

●

●
●

●●
●● ●

●

● ● ● ●

85%

90%

95%

100%

0 500000 1000000 1500000 2000000
Number of power switches

E
ne

rg
y 

C
on

su
m

ed

Algorithm

●

EASY
OS
inertial
inertial+OS
weakOS

32 / 34



Introduction Problem Definition Proposed Algorithms Evaluation Conclusion

Conclusion

Inertial shutdown:
Energy/Performance tradeoffs
Same order of energy savings as OS
Low mean performance loss
No max performance loss (not the case of OS)
Low #switch
Stable, predictable

Future work:
Communication
EASY constraints?
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Thanks!

Batsim: https://github.com/oar-team/batsim
Experiment: https://gitlab.inria.fr/batsim/article-cluster17

Contact
millian.poquet@inria.fr
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Inertial Shutdown

Parameters:
f ∶ N→ N, the inertia function
υub, the unresponsiveness mean threshold

Idea:
Based on Easy Backfilling
Estimates the system unresponsiveness at each event
Do switches periodically, computing MU: the mean
unresponsiveness since last periodic call

+MU → switch some machines ON
-MU → switch some machines OFF
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Inertial Shutdown: Idertia state

state ∈ {sedating , awakening} is stored
Initially, state = awakening

At each periodic call i :
(υ̃i ≥ υub) Ô⇒ state set to awakening.
Decision made immediately.
Otherwise,

(state = awakening) ∧ (υ̃i ≤ υ̃i−1) Ô⇒
state set to sedating . No decision made now.
(state = sedating) ∧ (υ̃i > υ̃i−1) Ô⇒
state set to awakening . No decision made now.
Otherwise, decision made immediately.
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Inertial Shutdown: Decision

Decision: Switch nb machines (ON/OFF depending on state)

Sa, switchable machines at i
Se , switched machines since i − 1 (for inertia reasons)

Switch at least 1 machine, without doing the impossible:

nb = min
⎛
⎝

max(f (∣Se ∣),1), ∣Sa∣
⎞
⎠
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Energy information

Variable Simulator Scheduler
ton→off 151.52 152 + 5
toff→on 6.1 6.1 + 5

poff 9.75 9.75
pidle 95 95

pcomp 190.738 190.738
pon→off 100.997 101.640
poff→on 125.174 125.197
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Energy / Mean Slowdown (KTH_SP2)
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Energy / Mean Slowdown (SDSC_SP2)
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Energy / Max Waiting Time (KTH_SP2)
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Energy / Max Waiting Time (SDSC_SP2)
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Opportunistic: Impact of tidle (KTH_SP2)
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Opportunistic: Impact of tidle (SDSC_SP2)
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Inertial: Impact of υub (KTH_SP2)

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●●

●

●
●●●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●●

88%

89%

90%

10000 15000 20000 25000
Mean Waiting Time (s)

E
ne

rg
y 

C
on

su
m

ed

υub (s)
● 10000

1e+05
2e+05

45 / 34



Algorithm information Data information Results Bibliography

Inertial: Impact of υub (SDSC_SP2)
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Inertial: Impact of T (KTH_SP2)
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Inertial: Impact of T (SDSC_SP2)
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