
Towards Reproducible Experiment Environments with Nix

Towards Reproducible Experiment
Environments with Nix

Adrien Faure, Millian Poquet

Rennes 2019, January 10, 2020

1 / 11

Towards Reproducible Experiment Environments with Nix

Experimentation From a Software Point of View

Experimentations

Experimentation codes

ad hoc

Poor (no?) documentation

Problem

Difficult replay

Hard to maintain

2 / 11

Towards Reproducible Experiment Environments with Nix

Experimentation From a Software Point of View

How to improve it: doc + automation

scripts

prepare inputs

build

run

analyze

well-defined environments

requirements

kernel?

hardware?

3 / 11

Towards Reproducible Experiment Environments with Nix

Nix

What is Nix ?

Nix is a Package Manager

Reproducible packages

Reproducible software environments

Multiple versions

Decentralized package repositories

Clear dependencies

Build on my laptop, run on g5k

4 / 11

Towards Reproducible Experiment Environments with Nix

Nix

Nix Concepts

Main Concept

Functional paradigm applied to package management

Functions build packages

Inputs = dependencies, source code, build script

Packages written in Nix expression language

No side effects

Undeclared dependencies → fail

New package → cannot break existing ones

5 / 11

Towards Reproducible Experiment Environments with Nix

Nix

Packages Example

Package Definition Example

stdenv.mkDerivation {
 name = "chord";
 src = fetchurl {
 url = "https://gitlab.com/me/chord.tar.gz";
 sha256 = "1h2jgq5pspyiskffq777nhi5rf0y8h...";
 };
 buildInputs = [simgrid boost cmake];
}

6 / 11

Towards Reproducible Experiment Environments with Nix

Nix

Store

Store

All packages in /nix/store

Isolated packages

Hash(inputs, source code)-packagename

Package names known before build → binary cache

/nix/store
└── hash-packagename
 ├── bin
 │ └── packagename
 └── lib
 └── libpackagename.so

7 / 11

Towards Reproducible Experiment Environments with Nix

Nix

Nix tools

Nix Build: build packages

Nix
Expression

/nix/store/awzvf...-chord-0.1.0
└── bin
 └── chord
/nix/store/db2fz...-glibc-2.27
└── lib
 └── libc.so.6
/nix/store/pdpmm...-simgrid-3.22.2
└── lib
 └── libsimgrid.so.3.22.2

8 / 11

Towards Reproducible Experiment Environments with Nix

Nix

Nix tools

Nix shell: Virtualenv on steroids

Nix
Expression

/nix/store/db2fz...-glibc-2.27
└── lib
 └── libc.so.6
/nix/store/pdpmm...-simgrid-3.22.2
├── bin
│ ├── smpicc
│ └── smpirun
└── lib
 └── libsimgrid.so.3.22.2

[shell]$ echo $PATH
/nix/store/pdpmm...-simgrid-3.22.2/bin/smpicc
/nix/store/pdpmm...-simgrid-3.22.2/bin/smpirun

[shell]$ echo $LIBRARY_PATH
/nix/store/db2fz...-glibc-2.27/lib
/nix/store/pdpmm...-simgrid-3.22.2/lib

9 / 11

Towards Reproducible Experiment Environments with Nix

Nix

NixPkgs

Package repositories

Package definitions

Source code (in Nix)

Stored in decentralized repositories

Official Git Repository: NixPkgs

https://github.com/NixOS/nixpkgs

Community maintained

+10K packages

CI checked

Binary caches

10 / 11

Towards Reproducible Experiment Environments with Nix

Experiment Reproducibility

Conclusion

Why it is reproducible ?

Traceable dependencies

Automated package build

Fixed application source

Pinned Nixpkgs

Limitations

No kernel version control

Require deterministic build

External storage (gitlab...)

https://mpoquet.gitlabpages.inria.fr/nix-tutorial/

11 / 11

Towards Reproducible Experiment Environments with Nix

Channels

A channel is link to branch of NixPkgs tested with
continuous integration.

Channels are useful to downloaded latest packaged version of a
software.

nixpkgs-unstable (feeling lucky?)

nixpkgs-19.03 (current stable)

nixpkgs-18.09 (outdated)

(Channels benefit from binary cache.)

1 / 3

Towards Reproducible Experiment Environments with Nix

Channels

Channels are not fully reproducible, as they are subject to
updates.

As experimenters, we will use another mechanism called pinning.

1 / 3

Towards Reproducible Experiment Environments with Nix

Nix - Command line interface

How do we use Nix ?

nix-build : build a derivation (that will be placed to the nix
store),

nix-env : install a package (in your current environment) ,

nix search: search for available packages.

nix-shell : start a shell in the build environment of a derivation,

2 / 3

Towards Reproducible Experiment Environments with Nix

Existing solutions

Module

Reproducibility

Portability

Multi-user

Multiple version

Binary packages

Isolated build env.

Isolated runtime env

3 / 3

	Experimentation From a Software Point of View
	Nix
	Nix Concepts
	Packages Example
	Store
	Nix tools
	NixPkgs

	Experiment Reproducibility
	Appendix

